【題目】有理數(shù)的乘除混合運算一般遵循運算順序.

【答案】從左向右
【解析】乘除運算是同級運算,一般遵循從左向右的順序運算
【考點精析】通過靈活運用有理數(shù)的四則混合運算,掌握在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上表示a的點到原點的距離為3,則a﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是由一些火柴棒搭成的圖案:

(1)擺第①個圖案用 根火柴棒,擺第②個圖案用 根火柴棒,擺第③個圖案用 根火柴棒.

(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?

(3)計算一下擺121根火柴棒時,是第幾個圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中的任意兩點P(x1,y1),Q(x2,y2),我們把|x1-x2|+|y1-y2|叫P,Q兩點間的“平面距離”,記作d(P,Q)。

(1)已知O為坐標(biāo)原點,動點M(x,y)是坐標(biāo)軸上的點,滿足d(O,M)=l,請寫出點M的坐標(biāo)。答: ________;

(2)設(shè)P0(x0,y0)是平面上一點,Q0(x,y)是直線l:y=kx+b上的動點,我們定義d(P0,Q0)的最小值叫做P0到直線l的“平面距離”。試求點M(2,1)到直線y=x+2的“平面距離”。

(3)在上面的定義基礎(chǔ)上,我們可以定義平面上一條直線l與⊙C的“直角距離”:在直線l與⊙C上各自任取一點,此兩點之間的“平面距離”的最小值稱為直線l與⊙O的“平面距離”,記作d(l,⊙C)。

試求直線y=x+2與圓心在直角坐標(biāo)系原點、半徑是1的⊙O的直角距離d(l,⊙O)=__________。(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-6mx+9m2-9=0。

(1)求證:此方程有兩個不相等的實數(shù)根;

(2)設(shè)此方程的兩個根分別為x1、x2。若2x1=x2-3,求m的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,x+5y60,則42x+y8yx_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.(1)自變量x的取值范圍是全體實數(shù),xy的幾組對應(yīng)值列表如下:

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

0

3

其中,m=  

2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.

3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).

4)進一步探究函數(shù)圖象發(fā)現(xiàn):

①函數(shù)圖象與x軸有  個交點,所以對應(yīng)的方程x2﹣2|x|=0   個實數(shù)根;

②方程x2﹣2|x|=2  個實數(shù)根.

③關(guān)于x的方程x2﹣2|x|=a4個實數(shù)根時,a的取值范圍是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2的相反數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第二象限內(nèi)的點P(x,y)滿足|x|=5,y2=4,則點P的坐標(biāo)是____________;

查看答案和解析>>

同步練習(xí)冊答案