【題目】如圖,中,,,,陰影部分的面積是( )
A.B.C.D.
【答案】A
【解析】
連接OB、OC,先利用同弧所對(duì)的圓周角等于所對(duì)的圓心角的一半,求出扇形的圓心角為60度,即可求出半徑的長(zhǎng)4,利用三角形和扇形的面積公式即可求解;
解:作OD⊥BC,則BD=CD,連接OB,OC,
∴OD是BC的垂直平分線,
∵
∴AB=AC,
∴A在BC的垂直平分線上,
∴A、O、D共線,
∵∠ACB=75°,AB=AC,
∴∠ABC=∠ACB=75°,
∴∠BAC=30°,
∴∠BOC=60°,
∵OB=OC,
∴△BOC是等邊三角形,
∴OA=OB=OC=BC=4,
∵AD⊥BC,AB=AC,
∴BD=CD,
∴OD=2
∴AD=4+2,
∴S△ABC=BCAD=,
S△BOC=BCOD=,
∴S陰影=S△ABC+S扇形BOC-S△BOC=+
=
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測(cè)得A,C之間的距離為12cm,點(diǎn)B,D之間的距離為16m,則線段AB的長(zhǎng)為
A. B. 10cmC. 20cmD. 12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了促進(jìn)旅游業(yè)的發(fā)展,某市新建一座景觀橋.橋的拱肋ADB可視為拋物線的一部分,橋面AB可視為水平線段,橋面與拱肋用垂直于橋面的桿狀景觀燈連接,拱肋的跨度AB為40米,橋拱的最大高度CD為16米(不考慮燈桿和拱肋的粗細(xì)),求與CD的距離為5米的景觀燈桿MN的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張琪和爸爸到曲江池遺址公園運(yùn)動(dòng),兩人同時(shí)從家出發(fā),沿相同路線前行,途中爸爸有事返回,張琪繼續(xù)前行5分鐘后也原路返回,兩人恰好同時(shí)到家張琪和爸爸在整個(gè)運(yùn)動(dòng)過(guò)程中離家的路點(diǎn)y1(米),y2(米)與運(yùn)動(dòng)時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示
(1)求爸爸返問(wèn)時(shí)離家的路程y2(米)與運(yùn)動(dòng)時(shí)間x(分)之間的函數(shù)關(guān)系式;
(2)張琪開(kāi)始返回時(shí)與爸爸相距多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花圃銷售一批名貴花卉,平均每天可售出20盆,每盆盈利40元,為了增加盈利并盡快減少庫(kù)存,花圃決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每盆花卉每降1元,花圃平均每天可多售出2盆.
(1)若花圃平均每天要盈利1200元,每盆花卉應(yīng)降價(jià)多少元?
(2)每盆花卉降低多少元時(shí),花圃平均每天盈利最多,是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
我們知道:一條直線經(jīng)過(guò)等腰直角三角形的直角頂點(diǎn),過(guò)另外兩個(gè)頂點(diǎn)分別向該直線作垂線,即可得三垂直模型”如圖①,在中,,,分別過(guò)、向經(jīng)過(guò)點(diǎn)直線作垂線,垂足分別為、,我們很容易發(fā)現(xiàn)結(jié)論:.
(1)探究問(wèn)題:如果,其他條件不變,如圖②,可得到結(jié)論;.請(qǐng)你說(shuō)明理由.
(2)學(xué)以致用:如圖③,在平面直角坐標(biāo)系中,直線與直線交于點(diǎn),且兩直線夾角為,且,請(qǐng)你求出直線的解析式.
(3)拓展應(yīng)用:如圖④,在矩形中,,,點(diǎn)為邊上—個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)落在點(diǎn)處,當(dāng)點(diǎn)在矩形外部時(shí),連接,.若為直角三角形時(shí),請(qǐng)你探究并直接寫(xiě)出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:我們把對(duì)角線互相垂直的四邊形叫做神奇四邊形.順次連接四邊形各邊中點(diǎn)得到的四邊形叫做中點(diǎn)四邊形.
(1)判斷:
①在平行四邊形、矩形、菱形中,一定是神奇四邊形的是 ;
②命題:如圖1,在四邊形中,則四邊形是神奇四邊形.此命題是_____(填“真”或“假”)命題;
③神奇四邊形的中點(diǎn)四邊形是
(2)如圖2,分別以的直角邊和斜邊為邊向外作正方形和正方形,連接
①求證:四邊形是神奇四邊形;
②若,求的長(zhǎng);
(3)如圖3,四邊形是神奇四邊形,若分別是方程的兩根,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1,圖2是兩張形狀、大小完全相同的8×10方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,點(diǎn)A,B,C均位于格點(diǎn)處,請(qǐng)按要求畫(huà)出格點(diǎn)四邊形(四邊形各頂點(diǎn)都在格點(diǎn)上).
(1)在圖1中畫(huà)出一個(gè)以點(diǎn)A,B,C,P為頂點(diǎn)的格點(diǎn)四邊形,且為中心對(duì)稱圖形.
(2)在圖2中畫(huà)出一個(gè)以點(diǎn)A,B,C,Q為頂點(diǎn)的格點(diǎn)四邊形,AC平分∠BCQ,且有兩個(gè)內(nèi)角為90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,以為邊在的另一側(cè)作,點(diǎn)為射線上任意一點(diǎn),在射線上截取,連接.
(1)如圖1,當(dāng)點(diǎn)落在線段的延長(zhǎng)線上時(shí),直接寫(xiě)出的度數(shù);
(2)如圖2,當(dāng)點(diǎn)落在線段(不含邊界)上時(shí),與于點(diǎn),請(qǐng)問(wèn)(1)中的結(jié)論是否仍成立?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com