精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,AD平分∠BAC , 按如下步驟作圖:
第一步,分別以點A、D為圓心,以大于 AD的長為半徑在AD兩側作弧,交于兩點M、N;
第二步,連接MN分別交AB、AC于點E、F
第三步,連接DE、DF
BD=6,AF=4,CD=3,則BE的長是( 。.

A.2
B.4
C.6
D.8

【答案】D
【解析】:∵根據作法可知:MN是線段AD的垂直平分線,
AE=DE , AF=DF ,
∴∠EAD=∠EDA ,
AD平分∠BAC ,
∴∠BAD=∠CAD ,
∴∠EDA=∠CAD
DEAC ,
同理DFAE ,
∴四邊形AEDF是菱形,
AE=DE=DF=AF ,
AF=4,
AE=DE=DF=AF=4,
DEAC ,

BD=6,AE=4,CD=3,
,
BE=8.
故選:D.
【考點精析】本題主要考查了線段垂直平分線的性質和平行線分線段成比例的相關知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;三條平行線截兩條直線,所得的對應線段成比例才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】問題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數量關系.

(1)【發(fā)現證明】
小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現EF=BE+FD,請你利用圖1證明上述結論.
(2)【類比引申】
如圖2,四邊形ABCD中∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足什么關系時,仍有EF=BE+FD
(3)【探究應用】如圖3,在某公園的同一水平面上,四條通道圍成的ABCD,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40( ,米,現要在E、F之間修一條筆直道路,求這條道路EF的長(結果取整數,參考數據: =1.41, =1.73).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在菱形ABCD中,AC=2,BD=2 ,AC,BD相交于點O.
(1)求邊AB的長;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉,其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F,連接EF與AC相交于點G. ①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉過程中,當點E為邊BC的四等分點時(BE>CE),求CG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點,AD⊥AE.

(1)求證:AC2=CDBC;
(2)過E作EG⊥AB,并延長EG至點K,使EK=EB.
①若點H是點D關于AC的對稱點,點F為AC的中點,求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】矩形OABC在平面直角坐標系中的位置如圖所示,點B的坐標為(3,4),D是OA的中點,點E在AB上,當△CDE的周長最小時,點E的坐標為(  )

A.(3,1)
B.(3,
C.(3,
D.(3,2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,則下底BC的長是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以O(0,0)、A(1,-1)、B(2,0)為頂點,構造平行四邊形,下列各點中不能作為平行四邊形第四個頂點坐標的是(   )

A.(3,-1)
B.(-1,-1)
C.(1,1)
D.(-2,-1)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD外作等腰直角△CDE,DE=CE,連接BE,則tan∠EBC=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一個正方體的展開圖,標注了字母a的面是正方體的正面,如果正方體相對兩個面上的整式的值相等,求整式(x+ya的值.

查看答案和解析>>

同步練習冊答案