【題目】如圖1,在RtABC中,∠ABC90°,ABBC,將ABC繞點A逆時針旋轉(zhuǎn),得到ADE,旋轉(zhuǎn)角為αα90°),連接BDCE于點F

1)如圖2,當(dāng)α45°時,求證:CFEF;

2)在旋轉(zhuǎn)過程中,①問(1)中的結(jié)論是否仍然成立?證明你的結(jié)論;②連接CD,當(dāng)CDF為等腰直角三角形時,求tan的值.

【答案】(1)見解析;(2) 成立,理由見解析;

【解析】

(1)如圖中,由EACDABAEAC,ADAB,可得AECACEADBABD,繼而可得FDFC,再根據(jù)EDC90°,繼而可推導(dǎo)得出FEDFDE,可得FEFD,即可求得EFFC;

(2)①如圖1中,結(jié)論仍然成立.理由:連接AF,由旋轉(zhuǎn)的性質(zhì)可推導(dǎo)得出FCAABF,從而可得A,BC,F四點共圓,繼而根據(jù)圓內(nèi)接四邊形的性質(zhì)可求得AFC90°,有AFEC,再根據(jù)AEAC,即可求得EFCF;

CFCDFCD90°DFDC,CDF90°兩種情況分別進行討論即可得.

(1)如圖中,

∵∠EACDABAEAC,ADAB

∴∠AECACEADBABD,

∵∠ADBCDF

∴∠FDCFCD,

FDFC,

∵∠EDC90°

∴∠DEF+∠ECD90°,FDE+∠FDC90°

∴∠FEDFDE,

FEFD,

EFFC

(2)①如圖1中,結(jié)論仍然成立.

理由:連接AF

∵AB=AD,AE=AC,

∠ABD=∠ADB∠ACE=∠EAC,

∵∠BAD=∠CAE∠ABD+∠ADB+∠BAD=180°,∠ACE+∠EAC+∠CAE=180°,

∴∠FCAABF,

A,BC,F四點共圓,

∴∠AFC+∠ABC180°,

∵∠ABC90°,

∴∠AFC90°

AFEC,

AEAC,

EFCF

如圖31中,當(dāng)CFCD,FCD90°時,連接AF,作CHBFH.設(shè)CFCDa

DE,DFa,

CFCD,CHDF,

HFHD,

CHDFa,

BCDEa,

BH,

AEAC,EFCF,

AF平分EAC,

A,BC,F四點共圓,

∴∠CAFCBHα,

∴tanα;

如圖32中,當(dāng)DFDC,CDF90°時,作DHCFH,連接AF.設(shè)CDDFm

CFEFaDHCFm,

DEBCm

BD2m,

∴tanα

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知點A4,0),O為坐標(biāo)原點,P是線段OA上任意一點不含端點O,A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C射線OB與AC相交于點D當(dāng)OD=AD=3時,這兩個二次函數(shù)的最大值之和等于( )

A B. C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C90°,AC6BC,點EA出發(fā)沿線段AC運動至點C停止,EDAB,EFAC,將ADE沿直線EF翻折得到ADE,設(shè)DEx,ADEABC重合部分的面積為y

1)當(dāng)x   時,D恰好落在BC上?

2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P為函數(shù)yx0)圖象上一點,過點Px軸、y軸的平行線,分別與函數(shù)yx0)的圖象交于點AB,則AOB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為推動時刻聽黨話 永遠跟黨走校園主題教育活動,計劃開展四項活動:A:黨史演講比賽,B:黨史手抄報比賽,C:黨史知識競賽,D:紅色歌詠比賽.校團委對學(xué)生最喜歡的一項活動進行調(diào)查,隨機抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:

1)本次共調(diào)查了   名學(xué)生;

2)將圖1的統(tǒng)計圖補充完整;

3)已知在被調(diào)查的最喜歡黨史知識競賽項目的4個學(xué)生中只有1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生參加該項目比賽,請用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°.

(1)用尺規(guī)在邊BC上求作一點P,使PA=PB(不寫作法,保留作圖痕跡);

(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點EAD邊的中點,點MAB邊上的一個動點(不與點A重合),延長MECD的延長線于點N,連接MD,AN

1)求證:四邊形AMDN是平行四邊形.

2)當(dāng)AM的值為何值時,四邊形AMDN是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:

甲林場

乙林場

購樹苗數(shù)量

銷售單價

購樹苗數(shù)量

銷售單價

不超過1000棵時

4/

不超過2000棵時

4/

超過1000棵的部分

3.8/

超過2000棵的部分

3.6/

設(shè)購買白楊樹苗x棵,到兩家林場購買所需費用分別為y(元)、y(元).

1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為   元,若都在乙林場購買所需費用為   元;

2)分別求出y、yx之間的函數(shù)關(guān)系式;

3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場購買樹苗合算,為什么?

查看答案和解析>>

同步練習(xí)冊答案