某德陽特產(chǎn)專賣店銷售“中江柚”,已知“中江柚”的進(jìn)價(jià)為每個(gè)10元,現(xiàn)在的售價(jià)是每個(gè)16元,每天可賣出120個(gè).市場調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)1元,每天要少賣出10個(gè);每降價(jià)1元,每天可多賣出30個(gè).
(1)如果專賣店每天要想獲得770元的利潤,且要盡可能的讓利給顧客,那么售價(jià)應(yīng)漲價(jià)多少元?
(2)請你幫專賣店老板算一算,如何定價(jià)才能使利潤最大,并求出此時(shí)的最大利潤?
解:(1)設(shè)售價(jià)應(yīng)漲價(jià)元,則:
,
解得:,.
又要盡可能的讓利給顧客,則漲價(jià)應(yīng)最少,所以(舍去).
∴ .
答:專賣店漲價(jià)1元時(shí),每天可以獲利770元.
(2)設(shè)單價(jià)漲價(jià)元時(shí),每天的利潤為1元,則:
(0≤≤12)
即定價(jià)為:16+3=19(元)時(shí),專賣店可以獲得最大利潤810元.
設(shè)單價(jià)降價(jià)z元時(shí),每天的利潤為2元,則:
(0≤z≤6)
即定價(jià)為:16-1=15(元)時(shí),專賣店可以獲得最大利潤750元.
綜上所述:專賣店將單價(jià)定為每個(gè)19元時(shí),可以獲得最大利潤810元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
到2013底,我縣已建立了比較完善的經(jīng)濟(jì)困難學(xué)生資助體系.某校2011年發(fā)放給每個(gè)經(jīng)濟(jì)困難學(xué)生450元,2013年發(fā)放的金額為625元.設(shè)每年發(fā)放的資助金額的平均增長率為x,則下面列出的方程中正確的是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P、Q同時(shí)從點(diǎn)C出發(fā),以1cm/s的速度分別沿CA、CB勻速運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).過點(diǎn)P作AC的垂線l交AB于點(diǎn)R,連接PQ、RQ,并作△PQR關(guān)于直線l對稱的圖形,得到△PQ'R.設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t(s),△PQ'R與△PAR重疊部分的面積為S(cm2).
(1)t為何值時(shí),點(diǎn)Q' 恰好落在AB上?
(2)求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
(3)S能否為?若能,求出此時(shí)t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線經(jīng)過A、B、C三點(diǎn),點(diǎn)P(1,k)在直線BC:y=x3上,若點(diǎn)M在x軸上,點(diǎn)N在拋物線上,是否存在以A、M、N、P為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,已知拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)過H的直線與y軸相交于點(diǎn)P,過O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F,若 =時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動(dòng)點(diǎn),直線NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG 與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com