【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點A(﹣2,0)、B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達(dá)終點時,另一個點也停止運動,當(dāng)△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時,在BC下方的拋物線上存在點K,使S△CBK:S△PBQ=5:2,求K點坐標(biāo).
【答案】(1)y=x2﹣x﹣3
(2)運動1秒使△PBQ的面積最大,最大面積是
(3)K1(1,﹣),K2(3,﹣)
【解析】
試題(1)把點A、B的坐標(biāo)分別代入拋物線解析式,列出關(guān)于系數(shù)a、b的解析式,通過解方程組求得它們的值;
(2)設(shè)運動時間為t秒.利用三角形的面積公式列出S△PBQ與t的函數(shù)關(guān)系式S△PBQ=﹣(t﹣1)2+.利用二次函數(shù)的圖象性質(zhì)進(jìn)行解答;
(3)利用待定系數(shù)法求得直線BC的解析式為y=x﹣3.由二次函數(shù)圖象上點的坐標(biāo)特征可設(shè)點K的坐標(biāo)為(m,m2﹣m﹣3).
如圖2,過點K作KE∥y軸,交BC于點E.結(jié)合已知條件和(2)中的結(jié)果求得S△CBK=.則根據(jù)圖形得到:S△CBK=S△CEK+S△BEK=EKm+EK(4﹣m),把相關(guān)線段的長度代入推知:﹣m2+3m=.易求得K1(1,﹣),K2(3,﹣).
解:(1)把點A(﹣2,0)、B(4,0)分別代入y=ax2+bx﹣3(a≠0),得
,
解得,
所以該拋物線的解析式為:y=x2﹣x﹣3;
(2)設(shè)運動時間為t秒,則AP=3t,BQ=t.
∴PB=6﹣3t.
由題意得,點C的坐標(biāo)為(0,﹣3).
在Rt△BOC中,BC==5.
如圖1,過點Q作QH⊥AB于點H.
∴QH∥CO,
∴△BHQ∽△BOC,
∴,即,
∴HQ=t.
∴S△PBQ=PBHQ=(6﹣3t)t=﹣t2+t=﹣(t﹣1)2+.
當(dāng)△PBQ存在時,0<t<2
∴當(dāng)t=1時,
S△PBQ最大=.
答:運動1秒使△PBQ的面積最大,最大面積是;
(3)設(shè)直線BC的解析式為y=kx+c(k≠0).
把B(4,0),C(0,﹣3)代入,得
,
解得,
∴直線BC的解析式為y=x﹣3.
∵點K在拋物線上.
∴設(shè)點K的坐為(m,m2﹣m﹣3).
如圖2,過點K作KE∥y軸,交BC于點E.則點E的坐標(biāo)為(m,m﹣3).
∴EK=m﹣3﹣(m2﹣m﹣3)=﹣m2+m.
當(dāng)△PBQ的面積最大時,∵S△CBK:S△PBQ=5:2,S△PBQ=.
∴S△CBK=.
S△CBK=S△CEK+S△BEK=EKm+EK(4﹣m)
=×4EK
=2(﹣m2+m)
=﹣m2+3m.
即:﹣m2+3m=.
解得 m1=1,m2=3.
∴K1(1,﹣),K2(3,﹣).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個四位數(shù),記千位數(shù)字與個位數(shù)字之和為,十位數(shù)字與百位數(shù)字之和為,如果,那么稱這個四位數(shù)為“對稱數(shù)”
最小的“對稱數(shù)”為 ;四位數(shù)與之和為最大的“對稱數(shù)”,則的值為 ;
一個四位的“對稱數(shù)”,它的百位數(shù)字是千位數(shù)字的倍,個位數(shù)字與十位數(shù)字之和為,且千位數(shù)字使得不等式組恰有個整數(shù)解,求出所有滿足條件的“對稱數(shù)”的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知半圓⊙O的直徑AB=10,弦CD∥AB,且CD=8,E為弧CD的中點,點P在弦CD上,聯(lián)結(jié)PE,過點E作PE的垂線交弦CD于點G,交射線OB于點F.
(1)當(dāng)點F與點B重合時,求CP的長;
(2)設(shè)CP=x,OF=y,求y與x的函數(shù)關(guān)系式及定義域;
(3)如果GP=GF,求△EPF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,若將△ABC繞點B順時針旋轉(zhuǎn)60°,點A的對應(yīng)點為點A′,點C的對應(yīng)點為點C′,點D為A′B的中點,連接AD.則點A的運動路徑與線段AD、A′D圍成的陰影部分面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點,點,…點在函數(shù)的圖象上, 都是等腰直角三角形,斜邊都在軸上(是大于或等于2的正數(shù)數(shù)),則__________.(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,∠ACB=90°,以點A為圓心,AC的長為半徑作⊙A,交AB于點D,交CA的延長線于點E.過點E作EF∥AB,交⊙A于點F,連接AF,BF,DF.
(1)求證:BF是⊙A的切線;
(2)填空:
①當(dāng)四邊形ADFE是周長為20的菱形時,BF= ;
②當(dāng)= 時,四邊形ACBF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把如圖1所示的菱形稱為基本圖形,將此基本圖形不斷復(fù)制并平移,使得相鄰兩個基本圖形的一個頂點與對稱中心重合,得到的所有菱形都稱為基本圖形的特征圖形,顯然圖2中有3個特征圖形.
(1)觀察以上圖形并完成如表:
根據(jù)表中規(guī)律猜想,圖n(n≥2)中特征圖形的個數(shù)為 .(用含n的式子表示)
圖形名稱 | 基本圖形的個數(shù) | 特征圖形的個數(shù) |
圖1 | 1 | 1 |
圖2 | 2 | 3 |
圖3 | 3 | 7 |
圖4 | 4 | |
…… | …… | …… |
(2)若基本圖形的面積為2,則圖2中小特征圖形的面積是 ;圖2020中所有特征圖形的面積之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線交于點和點,與軸、軸的交點分別為點,點的坐標(biāo)是,點是軸上一個動點.
(1)填空:① , ;
②B點的坐標(biāo)是 .
(2)若,求此時點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com