【題目】如圖,在直角坐標(biāo)系中,直線與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.
(1)直接寫出A點(diǎn)的坐標(biāo)__________;
(2)當(dāng)x__________時,y≤4;
(3)過B點(diǎn)作直線BP與x軸相交于P,若OP=2OA時,求ΔABP的面積;
(4) 在y軸上是否存在E點(diǎn),使得ΔABE為等腰三角形,若存在,直接寫出滿足條件的E點(diǎn)坐標(biāo).
【答案】(1) A(2,0);(2);(3)4或12;(4) ,, ,
【解析】
試題解析:(1)從函數(shù)圖象上易得A(2,0);
(2)由圖象可知,當(dāng)y≤4時,x≥0;
(3)根據(jù)條件可知P點(diǎn)坐標(biāo)分別為(-4,0)或(4,0),從而可求出ΔABP的面積;
(4)存在,分四種情況考慮.
試題解析:(1)從函數(shù)圖象上易得A(2,0);
(2)由圖象可知,當(dāng)y≤4時,x≥0;
(3)當(dāng)P在A點(diǎn)右側(cè)時,P(4,0)
∴SΔABP=×AP×OB
=×2×4
=4;
當(dāng)P在A點(diǎn)左側(cè)時,P(-4,0)
∴SΔABP=×AP×OB
=×6×4
=12;
(4)(0,4+2),(0,4-2),(0,-4),(0,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張規(guī)格、質(zhì)地相同的卡片,它們背面完全相同,正面圖案分別是A.平行四邊形,B.菱形,C.矩形,D.正方形,將這四張卡片背面朝上洗勻后.
(1)隨機(jī)抽取一張卡片圖案是軸對稱圖形的概率是 ;
(2)隨機(jī)抽取兩張卡片(不放回),求兩張卡片卡片圖案都是軸對稱圖形的概率,并用樹狀圖或列表法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,對角線AC,BD交于點(diǎn)O,E是BD延長線上的點(diǎn),且△ACE是等邊三角形.
(1)求證:四邊形ABCD是菱形;
(2)若∠AED=2∠EAD,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第五個圖形需要黑色棋子的個數(shù)是 ,第n個圖形需要黑色棋子的個數(shù)是 (n≥1,且n為整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為2a ,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個正方形.
(1)圖2的陰影部分的正方形的邊長是 ______.
(2)用兩種不同的方法求圖中陰影部分的面積.
(方法1)= _____________;
(方法2)=______________;
(3)觀察如圖2,寫出(a+b)2,(a-b)2,ab這三個代數(shù)式之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一假期小明一家自駕去距家360km的某地游玩,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若小汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,行駛的路程y(單位:km)與時間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是( 。
A. 小汽車在鄉(xiāng)村公路上的行駛速度為60km/h
B. 小汽車在高速公路上的行駛速度為120km/h
C. 鄉(xiāng)村公路總長為90km
D. 小明家在出發(fā)后5.5h到達(dá)目的地
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在梯形中,,點(diǎn)在直線上,聯(lián)結(jié),過點(diǎn)作的垂線,交直線與點(diǎn),
(1)如圖1,已知,:求證:;
(2)已知:,
① 當(dāng)點(diǎn)在線段上,求證:;
② 當(dāng)點(diǎn)在射線上,①中的結(jié)論是否成立?如果成立,請寫出證明過程;如果不成立,簡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,過點(diǎn)O作兩條射線OM、ON,且∠AOM=∠CON=90°
(1)若OC平分∠AOM,求∠AOD的度數(shù).
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過點(diǎn)B的切線AE與CD的延長線交于點(diǎn)A,OE∥BD,交BC于點(diǎn)F,交AB于點(diǎn)E.
(1)求證:∠E=∠C;
(2)若⊙O的半徑為3,AD=2,試求AE的長;
(3)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com