【題目】某年級共有330名男生,為了解該年級男生1000米跑步成績(單位:分/秒)的情況,從中隨機(jī)抽取30名男生進(jìn)行測試,獲得了他們的相關(guān)成績,并對數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.
a.1000米跑步的頻數(shù)分布表如下:
分組 | 3′17″<x≤3′ 37″ | 3′37″<x≤3′ 57″ | 3′ 57″<x≤4′ 17″ | 4′ 17″<x≤4′ 37″ | 4′ 37″<x≤4′ 57″ | 4′ 57″<x≤5′ 17″ |
頻數(shù) | 10 | 9 | m | 2 | 2 | 1 |
注:3′37″即3分37秒
b.1000米跑步在3′37″<x≤3′57″這一組是:
3′39 ″ 3′42 ″ 3′45 ″ 3′45″ 3′50 ″ 3′52 ″ 3′53″ 3′55″ 3′57″
根據(jù)以上信息,回答下列問題:
(1)表中m的值為 ;
(2)根據(jù)表頻數(shù)分布表畫出相應(yīng)的頻數(shù)分布直方圖.
(3)若男生1000米跑步成績等于或者優(yōu)于3′52″,成績記為優(yōu)秀.請估計全年級男生跑步成績達(dá)到優(yōu)秀的人數(shù).
【答案】(1)6;(2)見解析;(3)115.
【解析】
(1)用樣本容量30減去其他各成績段的頻數(shù)得到跑步時間為3′ 57″<x≤4′ 17″的頻數(shù)m的值;
(2)根據(jù)頻數(shù)分布表畫出頻數(shù)分布直方圖即可
(3)先計算樣本中男生1000米跑步成績等于或者優(yōu)于3′52″的百分比,再用全年級男生人數(shù)乘以這個百分比即可求解.
解:(1)m=30-10-9-2-2-1=6;
(2)由頻數(shù)分布表得到頻數(shù)分布直方圖如圖所示:
(3)由表格及1000米跑步在3′37″<x≤3′57″中的具體數(shù)據(jù)可得:男生1000米跑步成績等于或者優(yōu)于3′52″的頻數(shù)為15.故估計全年級男生跑步成績達(dá)到優(yōu)秀的人數(shù)為:330×=115人
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在初三綜合素質(zhì)評定結(jié)束后,為了了解年級的評定情況,現(xiàn)對初三某班的學(xué)生進(jìn)行了評定等級的調(diào)查,繪制了如下男女生等級情況折線統(tǒng)計圖和全班等級情況扇形統(tǒng)計圖.
(1)調(diào)查發(fā)現(xiàn)評定等級為合格的男生有2人,女生有1人,則全班共有名學(xué)生.
(2)補全女生等級評定的折線統(tǒng)計圖.
(3)根據(jù)調(diào)查情況,該班班主任從評定等級為合格和A的學(xué)生中各選1名學(xué)生進(jìn)行交流,請用樹形圖或表格求出剛好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點 D,E 分別在邊 AC,AB 上,BD 與 CE 交于點 O,給出下列三個條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個條件中,由哪兩個條件可以判定△ABC 是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P為等邊△ABC內(nèi)的一點,PA=10,PB=6,PC=8,將△ABP繞點B順時針旋轉(zhuǎn)60°到△CBP′位置.
(1)判斷△BPP′的形狀,并說明理由;
(2)求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=2,BF=8,BC=AE=6,CE=CF=7,則△CDF與四邊形ABDE的面積比值是( )
A. 1:1 B. 2:1 C. 1:2 D. 2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADC中,已知AB=8,∠ACB=105°,∠B=45°,且∠ACB=∠BAD,∠B=∠D,則線段CD的長是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC的邊OA在數(shù)軸上,O為原點,長方形OABC的面積為12,OC邊長為3.
(1)寫出數(shù)軸上點A表示的數(shù);
(2)將長方形OABC沿數(shù)軸向右水平移動,移動后的長方形記為,若移動后的長方形與原長方形OABC重疊部分的面積恰好等于原長方形OABC面積的時,寫出數(shù)軸上點表示的數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測,測得山坡頂A處的俯角為15°,山腳處B的俯角為60°,已知該山坡的坡度i=1: ,點P、H,B,C,A在同一個平面上,點HBC在同一條直線上,且PH⊥BC,則A到BC的距離為( )
A.10 米
B.15米
C.20 米
D.30米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com