【題目】北京昌平臨川學校政教處劉穎華主任為初二女學生安排住宿,如果每間住4人,那么將有30人無法安排,如果每間住8人,那么有一間宿舍不空也不滿.求宿舍間數(shù)和初二女學生人數(shù)?

【答案】宿舍間數(shù)為8,初二女學生人數(shù)為62人或宿舍間數(shù)為9,初二女學生人數(shù)為66人.

【解析】根據(jù)如果每間住4,那么有30人無法安排即說明人數(shù)與宿間數(shù)之間的關(guān)系,若設有x間宿舍,則住宿女生有(4x+30)人.如果每間住8,那么有一間宿舍不空也不滿即說明女生的人數(shù)與(x1)間宿舍住的學生數(shù)的差,應該大于或等于1,并且小于8

設有x間宿舍,則住宿女生有(4x+30)人,依題意,

解這個不等式組得解集為x

∵宿舍間數(shù)為整數(shù),x=89,

4×8+30=62(人)或4×9+30=66(人).

宿舍間數(shù)為8,初二女學生人數(shù)為62人或宿舍間數(shù)為9,初二女學生人數(shù)為66人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個長方體紙盒的平面展開圖,已知紙盒中相對兩個面上的數(shù)互為相反數(shù).

填空: , ;

先化簡, 再求值:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )

A. -3  B. -6  C. -4 D. -

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了落實黨的精準扶貧政策,A、B兩城決定向C、D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運肥料的費用分別為20/噸和25/噸;從B城往C、D兩鄉(xiāng)運肥料的費用分別為15/噸和24/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.

(1)A城和B城各有多少噸肥料?

(2)設從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求出最少總運費.

(3)由于更換車型,使A城運往C鄉(xiāng)的運費每噸減少a(0<a<6)元,這時怎樣調(diào)運才能使總運費最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知含字母ab的代數(shù)式是:3[a2+2b2+ab2]3a2+2b2)﹣4aba1

1)化簡代數(shù)式;

2)小紅取ab互為倒數(shù)的一對數(shù)值代入化簡的代數(shù)式中,恰好計算得代數(shù)式的值等于0,那么小紅所取的字母b的值等于多少?

3)聰明的小剛從化簡的代數(shù)式中發(fā)現(xiàn),只要字母b取一個固定的數(shù),無論字母a取何數(shù),代數(shù)式的值恒為一個不變的數(shù),那么小剛所取的字母b的值是多少呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形(非正方形)四個內(nèi)角的平分線圍成的四邊形是__________.(埴特殊四邊形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B分別為數(shù)軸上的兩點,A點對應的數(shù)為﹣20,B點對應的數(shù)為100.

(1)請寫出與A,B兩點距離相等的點M所對應的數(shù)   

(2)現(xiàn)有一只電子螞蟻PB出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動,x秒后兩只電子螞蟻在數(shù)軸上的C點相遇,請列方程求出x,并指出點C表示的數(shù).

(3)若當電子螞蟻PB點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動,y秒后兩只電子螞蟻在數(shù)軸上的D點相遇,請列方程求出y并指出點D表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某公園設計節(jié)日鮮花擺放方案,其中一個花壇由一批花盆堆成六角垛,頂層一個,以下各層堆成六邊形,逐層每邊增加一個花盆,若這垛花盆底層最長的一排共13個花盆,則底層的花盆的個數(shù)是(

A.91B.127C.169D.255

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABAC,∠BAC120°,以CA為邊在∠ACB的另一側(cè)作∠ACM=∠ACB,點D為射線CM上任意一點,在射線CM上載取CEBD,連接AD、AE.

(1)如圖1,當點D落在線段BC的延長線上時,求證:△ABD≌△ACE;

(2)(1)的條件下,求出∠ADE的度數(shù);

(3)如圖2,當點D落在線段BC(不含端點)上時,作AHBC,垂足為H,作AGEC,垂足為G,連接HG,判斷△GHC的形狀,并說明現(xiàn)由.

查看答案和解析>>

同步練習冊答案