【題目】為了落實(shí)黨的“精準(zhǔn)扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).
(3)由于更換車型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時(shí)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?
【答案】(1)A城和B城分別有200噸和300噸肥料;(2)從A城運(yùn)往D鄉(xiāng)200噸,從B城運(yùn)往C鄉(xiāng)肥料240噸,運(yùn)往D鄉(xiāng)60噸時(shí),運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是10040元;(3)當(dāng)0<a<4時(shí), A城200噸肥料都運(yùn)往D鄉(xiāng),B城240噸運(yùn)往C鄉(xiāng),60噸運(yùn)往D鄉(xiāng);當(dāng)a=4時(shí),在0≤x≤200范圍內(nèi)的哪種調(diào)運(yùn)方案費(fèi)用都一樣;當(dāng)4<a<6時(shí), A城200噸肥料都運(yùn)往C鄉(xiāng),B城40噸運(yùn)往C鄉(xiāng),260噸運(yùn)往D鄉(xiāng).
【解析】(1)根據(jù)A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,列方程或方程組得答案;
(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,用含x的代數(shù)式分別表示出從A運(yùn)往運(yùn)往D鄉(xiāng)的肥料噸數(shù),從B城運(yùn)往C鄉(xiāng)肥料噸數(shù),及從B城運(yùn)往D鄉(xiāng)肥料噸數(shù),根據(jù):運(yùn)費(fèi)=運(yùn)輸噸數(shù)×運(yùn)輸費(fèi)用,得一次函數(shù)解析式,利用一次函數(shù)的性質(zhì)得結(jié)論;
(3)列出當(dāng)A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元時(shí)的一次函數(shù)解析式,利用一次函數(shù)的性質(zhì)討論,得結(jié)論.
(1)設(shè)A城有化肥a噸,B城有化肥b噸,
根據(jù)題意,得,
解得,
答:A城和B城分別有200噸和300噸肥料;
(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,則運(yùn)往D鄉(xiāng)(200﹣x)噸,
從B城運(yùn)往C鄉(xiāng)肥料(240﹣x)噸,則運(yùn)往D鄉(xiāng)(60+x)噸,
設(shè)總運(yùn)費(fèi)為y元,根據(jù)題意,
則:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,
∵,∴0≤x≤200,
由于函數(shù)是一次函數(shù),k=4>0,
所以當(dāng)x=0時(shí),運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是10040元;
(3)從A城運(yùn)往C鄉(xiāng)肥料x噸,由于A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,
所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,
當(dāng)4﹣a>0時(shí),即0<a<4時(shí),y隨著x的增大而增大,∴當(dāng)x=0時(shí),運(yùn)費(fèi)最少,A城200噸肥料都運(yùn)往D鄉(xiāng),B城240噸運(yùn)往C鄉(xiāng),60噸運(yùn)往D鄉(xiāng);
當(dāng)4-a=0時(shí),即a=4時(shí),y=10040,在0≤x≤200范圍內(nèi)的哪種調(diào)運(yùn)方案費(fèi)用都一樣;
當(dāng)4﹣a<0時(shí),即4<a<6時(shí),y隨著x的增大而減小,∴當(dāng)x=240時(shí),運(yùn)費(fèi)最少,此時(shí)A城200噸肥料都運(yùn)往C鄉(xiāng),B城40噸運(yùn)往C鄉(xiāng),260噸運(yùn)往D鄉(xiāng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB與直線CD相交于點(diǎn)O,OE平分.
(1)如圖①,若,求的度數(shù);
(2)如圖②,射線OF在內(nèi)部.
①若,判斷OF是否為的平分線,并說明理由;
②若OF平分,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC=120°,將一直角三角形的直角(∠MON=90°)頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)在圖1中,∠NOC= .
(2)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:NO的延長線OD是否平分∠AOC?請說明理由;
(3)將圖1中的三角板繞點(diǎn)O按每秒6°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則t的值為 秒?(直接寫出結(jié)果)
(4)將圖1中的三角板繞點(diǎn)O旋轉(zhuǎn)至圖3的位置,使ON在∠AOC的內(nèi)部,則∠AOM-∠NOC= °
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,延長BC至M,使BM=DN,連接MN交BD延長線于點(diǎn)E.
(1)求證:BD+2DE=BM.
(2)如圖2,連接BN交AD于點(diǎn)F,連接MF交BD于點(diǎn)G.若AF:FD=1:2,且CM=2,則線段DG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的拋物線是二次函數(shù)(a≠0)的圖象,則下列結(jié)論:①abc>0;②b+2a=0;③拋物線與x軸的另一個(gè)交點(diǎn)為(4,0);④a+c>b;⑤3a+c<0.其中正確的結(jié)論有
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京昌平臨川學(xué)校政教處劉穎華主任為初二女學(xué)生安排住宿,如果每間住4人,那么將有30人無法安排,如果每間住8人,那么有一間宿舍不空也不滿.求宿舍間數(shù)和初二女學(xué)生人數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長沙九龍倉國際金融中心主樓高達(dá),是目前湖南省第一高樓,和它處于同一水平面上的第二高樓高,為了測量高樓上發(fā)射塔的高度,在樓底端點(diǎn)測得的仰角為α,,在頂端E測得A的仰角為,求發(fā)射塔的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,根據(jù)材料回答:
例如1:
.
例如2:
8×0.125=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125
=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)
=(8×0.125)6 =1.
(1)仿照上面材料的計(jì)算方法計(jì)算:;
(2)由上面的計(jì)算可總結(jié)出一個(gè)規(guī)律:(用字母表示) ;
(3)用(2)的規(guī)律計(jì)算:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com