【題目】如圖,已知分別為的直徑和弦, 的中點,垂直于的延長線于,連接,若,,下列結(jié)論一定錯誤的是( )

A. DE是⊙O的切線 B. 直徑AB長為20cm

C. AC長為16cm D. C 的中點

【答案】D

【解析】

AB是圓的直徑,則∠ACB=90°,根據(jù)DE垂直于AC的延長線于E,可以證得ED∥BC,則DE⊥OD,即可證得DE是圓的切線,根據(jù)切割線定理即可求得AC的長,連接OD,交BC與點F,則四邊形DECF是矩形,根據(jù)垂徑定理即可求得半徑.

解答:解:連接OD,OC

∵D是弧BC的中點,則OD⊥BC,

∴DE是圓的切線.故A正確;

∴DE2=CE?AE

即:36=2AE

∴AE=18,則AC=AE-CE=18-2=16cm.故C正確;

∵AB是圓的直徑.

∴∠ACB=90°,

∵DE垂直于AC的延長線于E

D是弧BC的中點,則OD⊥BC

四邊形CFDE是矩形.

∴CF=DE=6cmBC=2CF=12cm

在直角△ABC中,根據(jù)勾股定理可得:AB===20cm.故B正確;

在直角△ABC中,AC=16,AB=20

∠ABC≠30°,

D是弧BC的中點.

AC≠CD

D錯誤.

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(3,0),B(2,﹣3),并且以x=1為對稱軸.

(1)求此函數(shù)的解析式;

(2)作出二次函數(shù)的大致圖象

(3)在對稱軸x=1上是否存在一點P,使△PABPA=PB?若存在,求出P點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線相離,于點,,相交于點相切于點,的延長線交直線于點.若上存在點,使是以為底邊的等腰三角形,則半徑的取值范圍是:________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ADB△ADC中,下列條件:①BDDC,ABAC②∠B∠C,∠BAD∠CAD③∠B∠C,BDDC④∠ADB∠ADC,BDDC.能得出△ADB≌△ADC的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知

1)用直尺和圓規(guī)畫出的平分線(保留作圖痕跡,不寫作法,不用證明)

2)在射線上任意選取一點,再在射線上選取一點,要求為鈍角.

①在射線上找到所有使得的點

②寫出之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB6,MN在邊AB上運動,MN3,AP2,BQ5,PM+MN+NQ最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了使電線桿穩(wěn)固的垂直于地面,兩側(cè)常用拉緊的鋼絲繩索固定,由于鋼絲繩的交點在電線桿的上三分之一處,所以知道的高度就可以知道電線桿的高度了.要想得到的高度,需要測量出一些數(shù)據(jù),然后通過計算得出.

請你設計出要測量的對象:________;

請你寫出計算高度的思路:________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學課上,老師提出利用尺規(guī)作圖完成下面問題:

已知:∠ACB是△ABC的一個內(nèi)角.

求作:∠APB=∠ACB.

小明的做法如下:

如圖

①作線段AB的垂直平分線m;

②作線段BC的垂直平分線n,與直線m交于點O;

③以點O為圓心,OA為半徑作△ABC的外接圓;

④在弧ACB上取一點P,連結(jié)AP,BP.

所以∠APB=∠ACB.

老師說:“小明的作法正確.”

請回答:

(1)點O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;

(2)∠APB=∠ACB的依據(jù)是_____

查看答案和解析>>

同步練習冊答案