【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.
(1)求證:AB∥CD;(2)試探究∠2與∠3的數量關系.
【答案】(1)見解析;(2)∠2+∠3=90°
【解析】
(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根據同旁內角互補,可得兩直線平行.
(2)已知∠1+∠2=90°,即∠BED=90°,那么∠3+∠FDE=90°,等量代換,即可得出∠3與∠2的數量關系.
解:(1)∵BE、DE平分∠ABD、∠BDC,
∴∠1=∠ABD,∠2=∠BDC,
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°;
∴AB∥CD;(同旁內角互補,兩直線平行)
(2)∵DE平分∠BDC,∴∠2=∠FDE;
∵∠1+∠2=90°,∴∠BED=∠DEF=90°;
∴∠3+∠FDE=90°;
∴∠2+∠3=90°.
科目:初中數學 來源: 題型:
【題目】今年“五一“假期.某數學活動小組組織一次登山活動.他們從山腳下A點出發(fā)沿斜坡AB到達B點.再從B點沿斜坡BC到達山頂C點,路線如圖所示.斜坡AB的長為1040米,斜坡BC的長為400米,在C點測得B點的俯角為30°.已知A點海拔121米.C點海拔721米.
(1)求B點的海拔;
(2)求斜坡AB的坡度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“格子乘法”作為兩個數相乘的一種計算方法最早在15世紀由意大利數學家帕喬利提出,在明代的《算法統(tǒng)宗》一書中被稱為“鋪地錦”.如圖1,計算,將乘數47計入上行,乘數51計入右行,然后以乘數47的每位數字乘以乘數51的每位數字,將結果計入相應的格子中,最后按斜行加起來,得2397.
(1)如圖2,用“格子乘法”表示,則的值為__________.
(2)如圖3,用“格子乘法”表示兩個兩位數相乘,則的值為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線C1:y=x2﹣1(﹣1≤x≤1)與x軸交于A、B兩點,拋物線C2與拋物線C1關于點A中心對稱,拋物線C3與拋物線C1關于點B中心對稱.若直線y=﹣x+b與由C1、C2、C3組成的圖形恰好有2個公共點,則b的取值或取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一動點從原點O出發(fā),沿著箭頭方向,每次移動1個單位長度,依次得到點A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),…,則點A2018的坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為提高公民社會責任感,保證每個納稅人公平納稅,調節(jié)不同階層貧富差距,營造“納稅光榮”社會氛圍,2019年我國實行新的《個人收入所得稅征收辦法》,將個人收所得稅的起征點提高至5000元(即全月個人收所得不超過5000元的,免征個人收入所得稅):個人收入超過5000元的,其超出部分稱為“應納稅所得額”,國家對納稅人的“應納稅所得額”實行“七級超額累進個人所得稅制度”,該制度的前兩級納稅標準如下:
①全月應納稅所得額不超過3000元的,按3%的稅率計稅;
②全月應納稅所得額超過3000元但不超過12000元的部分,按10%的稅率計稅.
按照新的《個人收入所得稅征收辦法》,在2019年某月,如果納稅人甲繳納個人收入所得稅75元,納稅人乙當月收入為9500元,納稅人丙繳納個人收入所得稅110元.
(1)甲當月個人收入所得是多少?
(2)乙當月應繳納多少個人收入所得稅?
(3)丙當月個人收入所得是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校計劃購買一批籃球和足球,已知購買2個籃球和1個足球共需320元,購買3個籃球和2個足球共需540元.
(1)求每個籃球和每個足球的售價;
(2)如果學校計劃購買這兩種球共50個,總費用不超過5500元,那么最多可購買多少個足球?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】浠水縣商場某柜臺銷售每臺進價分別為160元、120元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 4臺 | 1200元 |
第二周 | 5臺 | 6臺 | 1900元 |
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A、B兩種型號的電風扇的銷售單價;
(2)若商場準備用不多于7500元的金額再采購這兩種型號的電風扇共50臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,商場銷售完這50臺電風扇能否實現利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面的說理過程:如圖,在四邊形中,,分別是,延長線上的點,連接,分別交,于點,.已知,.對和說明理由.
理由:(已知),
(______),
(等量代換).
(______).
(______).
(______),
(______).
(______).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com