【題目】如圖.矩形ABCD的對(duì)角線相交于點(diǎn)O.DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面積為8 ,求AC的長(zhǎng).
【答案】
(1)證明:∵DE∥OC,CE∥OD,
∴四邊形OCED是平行四邊形.
∵四邊形ABCD是矩形,
∴AO=OC=BO=OD.
∴四邊形OCED是菱形
(2)解:∵∠ACB=30°,
∴∠DCO=90°﹣30°=60°.
又∵OD=OC,
∴△OCD是等邊三角形.
過(guò)D作DF⊥OC于F,則CF= OC,設(shè)CF=x,則OC=2x,AC=4x.
在Rt△DFC中,tan60°= ,
∴DF= x.
∴OCDF=8 .
∴x=2.
∴AC=4×2=8.
【解析】(1)熟記菱形的判定定理,本題可用一組鄰邊相等的平行四邊形是菱形.(2)因?yàn)椤螦CB=30°可證明菱形的一條對(duì)角線和邊長(zhǎng)相等,可證明和對(duì)角線構(gòu)成等邊三角形,然后作輔助線,根據(jù)菱形的面積已知可求解.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用矩形的性質(zhì)和解直角三角形的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的切線,B為切點(diǎn),圓心在AC上,∠A=30°,D為 的中點(diǎn).
(1)求證:AB=BC;
(2)求證:四邊形BOCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為x=﹣1.給出四個(gè)結(jié)論:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正確結(jié)論是( )
A.②④
B.①④
C.②③
D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的情況(記向東為正)記錄如下(x>5且x<14,單位:m):
行駛次數(shù) | 第一次 | 第二次 | 第三次 | 第四次 |
行駛情況 | x | ﹣x | x﹣3 | 2(5﹣x) |
行駛方向(填“東”或“西”) |
|
|
|
|
(1)請(qǐng)將表格補(bǔ)充完整;
(2)求經(jīng)過(guò)連續(xù)4次行駛后,這輛出租車所在的位置;
(3)若出租車行駛的總路程為41m,求第一次行駛的路程x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明參加某網(wǎng)店的“翻牌抽獎(jiǎng)”活動(dòng),如圖,4張牌分別對(duì)應(yīng)價(jià)值5,10,15,20(單位:元)的4件獎(jiǎng)品.
(1)如果隨機(jī)翻1張牌,那么抽中20元獎(jiǎng)品的概率為 .
(2)如果隨機(jī)翻2張牌,且第一次翻過(guò)的牌不再參加下次翻牌,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出所獲獎(jiǎng)品總值不低于30元的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(﹣1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)C在x軸的正半軸上.
(1)求該拋物線的函數(shù)關(guān)系表達(dá)式.
(2)點(diǎn)F為線段AC上一動(dòng)點(diǎn),過(guò)F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當(dāng)四邊形OEFG為正方形時(shí),求出F點(diǎn)的坐標(biāo).
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雞兔同籠問(wèn)題是我國(guó)古代著名趣題之一,大約在 1500 年前,《孫子算經(jīng)》中就記載了這個(gè)有趣的問(wèn)題.書(shū)中是這樣敘述的:“今有雉兔同籠,上有三十五頭,下有九十四足,問(wèn)雉兔各幾何?”這四句話的意思是:有若干只雞、兔同在一個(gè)籠子里,從上上面數(shù),有 35 個(gè)頭;從下面數(shù),有 94 只腳 .求籠中各有幾只雞和兔?經(jīng)計(jì)算可得( )
A. 雞 20 只,兔 15 只 B. 雞 12 只,兔 23 只
C. 雞 15 只,兔 20 只 D. 雞 23 只,兔 12 只
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)⑴班想買一些運(yùn)動(dòng)器材供班上同學(xué)陽(yáng)光體育活動(dòng)使用,班主任安排班長(zhǎng)去商店買籃球和排球,下面是班長(zhǎng)與售貨員的對(duì)話:
班長(zhǎng):阿姨,您好! 售貨員:同學(xué),你好,想買點(diǎn)什么?
⑴根據(jù)這段對(duì)話,你能算出籃球和排球的單價(jià)各是多少嗎?
⑵六一兒童節(jié)店里搞活動(dòng)有兩種套餐,1、套裝打折:五個(gè)籃球和五個(gè)排球?yàn)橐惶籽b,套裝打 八折:2、滿減活動(dòng):999 減 100,1999 減 200;兩種活動(dòng)不重復(fù)參與,學(xué)校需要 15個(gè)籃球,13 個(gè)排球作為獎(jiǎng)品,請(qǐng)問(wèn)如何安排購(gòu)買更劃算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)倉(cāng)庫(kù)共存有糧食60.解決下列問(wèn)題,3個(gè)小題都要寫(xiě)出必要的解題過(guò)程:
(1)甲倉(cāng)庫(kù)運(yùn)進(jìn)糧食14,乙倉(cāng)庫(kù)運(yùn)出糧食10后,兩個(gè)倉(cāng)庫(kù)的糧食數(shù)量相等.甲、乙兩個(gè)倉(cāng)庫(kù)原來(lái)各有多少糧食?
(2)如果甲倉(cāng)庫(kù)原有的糧食比乙倉(cāng)庫(kù)的2倍少3,則甲倉(cāng)庫(kù)運(yùn)出多少糧食給乙倉(cāng)庫(kù),可使甲、乙兩倉(cāng)庫(kù)糧食數(shù)量相等?
(3)甲乙兩倉(cāng)庫(kù)同時(shí)運(yùn)進(jìn)糧食,甲倉(cāng)庫(kù)運(yùn)進(jìn)的數(shù)量比本倉(cāng)庫(kù)原存糧食數(shù)量的一半多1,乙倉(cāng)庫(kù)運(yùn)進(jìn)的數(shù)量是本倉(cāng)庫(kù)原有糧食數(shù)量加上8所得的和的一半.求此時(shí)甲、乙兩倉(cāng)庫(kù)共有糧食多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com