【題目】某水果批發(fā)商經(jīng)銷一種高檔水果,如果每千克盈利5元,每天可售出200千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)價(jià)不變的情況下,若每千克漲價(jià)0.1元,銷售量將減少1千克
(1)現(xiàn)該商場(chǎng)保證每天盈利1500元,同時(shí)又要照顧顧客,那么每千克應(yīng)漲價(jià)多少元?
(2)若該商場(chǎng)單純從經(jīng)濟(jì)利益角度考慮,這種水果每千克漲價(jià)多少元,使該商場(chǎng)獲利最大?
【答案】(1)漲價(jià)5元;(2)漲價(jià)7.5元
【解析】
(1)根據(jù)題意列出一元二次方程,然后求出其解,最后根據(jù)題意確定其值;
(2)根據(jù)題意列出二次函數(shù)解析式,然后轉(zhuǎn)化為頂點(diǎn)式,最后求其最值即可.
解:(1)設(shè)每千克應(yīng)漲價(jià)x元,由題意列方程得:
(5+x)(200﹣)=1500
解得:x=5或x=10,
答:為了使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)5元;
(2)設(shè)漲價(jià)x元時(shí)總利潤(rùn)為y,
則y=(5+x)(200﹣)
=﹣10x2+150x+1000
=﹣10(x2﹣15x)+1000
=﹣10(x﹣7.5)2+1562.5,
答:若該商場(chǎng)單純從經(jīng)濟(jì)角度看,每千克這種水果漲價(jià)7.5元,能使商場(chǎng)獲利最多.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著新能源汽車的發(fā)展,某公交公司將用新能源公交車淘汰某一條線路上“冒黑煙”較嚴(yán)重的燃油公交車,計(jì)劃購(gòu)買A型和B型新能源公交車共10輛,若購(gòu)買A型公交車1輛,B型公交車2輛,共需300萬(wàn)元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需270萬(wàn)元,
(1)求購(gòu)買A型和B型公交車每輛各需多少萬(wàn)元?
(2)預(yù)計(jì)在該條線路上A型和B型公交車每輛年均載客量分別為80萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過1000萬(wàn)元,且確保這10輛公交車在該線路的年均載客量總和不少于900萬(wàn)人次,則該公司有哪幾種購(gòu)車方案?哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:有一組對(duì)角相等的四邊形叫做“等對(duì)角四邊形”.
(1)如圖①,四邊形ABCD內(nèi)接于⊙O,點(diǎn)E在CD的延長(zhǎng)線上,且AE=AD.證明:四邊形ABCE是“等對(duì)角四邊形”.
(2)如圖②,在“等對(duì)角四邊形”ABCD中,∠DAB=∠BCD=53°,∠B=90°,sin53°≈,cos53°≈,tan53°≈.
(3)如圖③,在Rt△ACD中,∠ACD=90°,∠DAC=30°,CD=4,若四邊形ABCD是“等對(duì)角四邊形”,且∠B=∠D,則BD的最大值是 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,拋物線C1:y=ax2﹣2x﹣3與拋物線C2:y=x2+mx+n關(guān)于y軸對(duì)稱,C2與x軸交于A、B兩點(diǎn),其中點(diǎn)A在點(diǎn)B的左側(cè).
(1)求拋物線C1,C2的函數(shù)表達(dá)式;
(2)求A、B兩點(diǎn)的坐標(biāo);
(3)在拋物線C1上是否存在一點(diǎn)P,在拋物線C2上是否存在一點(diǎn)Q,使得以AB為邊,且以A、B、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB 圍成的圖形稱為該拋物線對(duì)應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M 稱為碟頂.
(1)由定義知,取AB中點(diǎn)N,連結(jié)MN,MN與AB的關(guān)系是_____.
(2)拋物線y=對(duì)應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),則m=_____,對(duì)應(yīng)的碟寬AB是_____.
(3)拋物線y=ax2﹣4a﹣(a>0)對(duì)應(yīng)的碟寬在x 軸上,且AB=6.
①求拋物線的解析式;
②在此拋物線的對(duì)稱軸上是否有這樣的點(diǎn)P(xp,yp),使得∠APB為銳角,若有,請(qǐng)求出yp的取值范圍.若沒有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(0,4).
(1)求這條拋物線的表達(dá)式;
(2)P是拋物線對(duì)稱軸上的點(diǎn),聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點(diǎn)P的坐標(biāo);
(3)將拋物線沿y軸向下平移m個(gè)單位,所得新拋物線與y軸交于點(diǎn)D,過點(diǎn)D作DE∥x軸交新拋物線于點(diǎn)E,射線EO交新拋物線于點(diǎn)F,如果EO=2OF,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE是O的直徑,點(diǎn)A和點(diǎn)D是⊙O上的兩點(diǎn),過點(diǎn)A作⊙O的切線交BE延長(zhǎng)線于點(diǎn).
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AB=AC,CE=2,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,已知B地位于A地北偏東67°方向,距離A地520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線路的長(zhǎng).(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A、B兩點(diǎn)的縱坐標(biāo)分別為3,1,反比例函數(shù)y=的圖象經(jīng)過A,B兩點(diǎn),則點(diǎn)D的坐標(biāo)為( )
A. (2﹣1,3)B. (2+1,3)
C. (2﹣1,3)D. (2+1,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com