【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1格點△ABC的頂點A、C的坐標分別為(﹣45)、(﹣1,3).

1)請在圖中正確作出平面直角坐標系;

2)請作出ABC關(guān)于y軸對稱的△ABC;

3)點B′的坐標為      ,ABC′的面積為      

【答案】(1)答案見解析;(2)答案見解析;(3)(2,1),4

【解析】試題分析: (1)根據(jù)點A、C的坐標作出直角坐標系;

(2)分別作出點A、B、C關(guān)于y軸對稱的點,然后順次連接;

(3)根據(jù)直角坐標系的特點寫出點B'de坐標,求出面積.

試題解析: (1)(2)所作圖形如圖所示:

(3)B的坐標為(2,1),

ABC的面積=3×412×2×412×2×112×2×3=4.

故答案為:(2,1),4.

點睛: 本題考查了根據(jù)軸對稱變換作圖,解答本題的關(guān)鍵是根據(jù)網(wǎng)格結(jié)構(gòu)作出點A、B、C的對應(yīng)點的坐標.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明準備進行如下操作試驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形

(1)要使這兩個正方形的面積之和等于58 cm2李明應(yīng)該怎么剪這根鐵絲?

(2)李明認為這兩個正方形的面積之和不可能等于48 cm2,你認為他的說法正確嗎?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列各組線段的長為邊,能組成三角形的是( )

A.3cm,6cm,8cmB.3cm2cm,6cmC.5cm,6cm,11cmD.2cm7cm,4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題提出】

學(xué)習(xí)了三角形全等的判定方法(即“SSS”“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等的情形進行研究.

【初步思考】

我們不妨將問題用符號語言表示為:在△ABC△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角三種情況進行探究.

【深入探究】

第一種情況:當∠B是直角時,△ABC≌△DEF

如圖,在△ABC△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)   ,可以知道Rt△ABC≌Rt△DEF

第二種情況:當∠B是鈍角時,△ABC≌△DEF

如圖,在△ABC△DEFAC=DF,BC=EF∠B=∠E,且∠B,∠E都是鈍角,請你證明:△ABC≌△DEF(提示:過點CCG⊥ABAB的延長線于G,過點FFH⊥DEDE的延長線于H).

第三種情況:當∠B是銳角時,△ABC△DEF不一定全等.

△ABC△DEF,AC=DF,BC=EF∠B=∠E,且∠B∠E都是銳角,請你利用圖,在圖中用尺規(guī)作出△DEF,使△DEF△ABC不全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個商店把iPad按標價的九折出售,仍可獲利20%,若該iPad的進價是2400元,則ipad標價是(
A.3200元
B.3429元
C.2667元
D.3168元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在△ABC中,∠C=90°,AC=BC,BD平分∠CBA,DE⊥AB于點E.

求證:AD+DE=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A1,1)先向左平移2個單位,再向下平移2個單位得點B,則點B的坐標是(  )

A.(-1,-1B.3,3C.0,0D.(-13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算中,正確的是(
A.x4x2=x8
B.x4÷x2=x6
C.(x42=x8
D.(3x)2=3x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做等鄰邊四邊形

1)如圖1,在四邊形ABCD中添加一個條件使得四邊形ABCD等鄰邊四邊形.請寫出你添加的一個條件.

2)問題探究

小紅提出了一個猜想:對角線互相平分且相等的等鄰邊四邊形是正方形.她的猜想正確嗎?請說明理由.

3)如圖2,等鄰邊四邊形ABCD中,ABAD,BADBCD90°,AC,BD為對角線,AC AB.試探究線段BC,CD,BD之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案