【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時(shí)間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時(shí)小亮與媽媽相距多少米(精確到1米)?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73

【答案】288

【解析】

試題先過PPC⊥ABC,在Rt△APC中,根據(jù)AP=200m,∠ACP=90°∠PAC=60°求出PC的長,再根據(jù)在Rt△PBC中,,得出PB的值,即可得出答案。

解:過PPC⊥ABC,

Rt△APC中,AP=200m,∠ACP=90°,∠PAC=60°

∴PC=200×sin60°=200×=100。

Rt△PBC中,,

m)。

答:小亮與媽媽相距約288米。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E,F分別在邊ADCD上,且EFBE,EF=BEDEF的外接圓⊙O恰好切BC于點(diǎn)G,BF交⊙O于點(diǎn)H,連結(jié)DH.AB=8,則DH=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ykx4k+4與拋物線yx2x交于AB兩點(diǎn).

1)直線總經(jīng)過定點(diǎn),請直接寫出該定點(diǎn)的坐標(biāo);

2)點(diǎn)P在拋物線上,當(dāng)k=﹣時(shí),解決下列問題:

在直線AB下方的拋物線上求點(diǎn)P,使得△PAB的面積等于20;

連接OA,OBOP,作PCx軸于點(diǎn)C,若△POC和△ABO相似,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不透明的袋子中裝有4個(gè)相同的小球,它們除顏色外無其它差別,把它們分別標(biāo)號:1、2、3、4

(1)隨機(jī)摸出一個(gè)小球后,放回并搖勻,再隨機(jī)摸出一個(gè),用列表或畫樹狀圖的方法求出“兩次取的球標(biāo)號相同”的概率

(2)隨機(jī)摸出兩個(gè)小球,直接寫出“兩次取出的球標(biāo)號和等于4”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋中裝有5個(gè)只有顏色不同的球,其中3個(gè)黃球,2個(gè)黑球.

(1)求從袋中同時(shí)摸出的兩個(gè)球都是黃球的概率;

(2)現(xiàn)將黑球和白球若干個(gè)(黑球個(gè)數(shù)是白球個(gè)數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個(gè)球是黑球的概率是,求放入袋中的黑球的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,ABDC8,∠B60°,BC12,連接AC

1)求tanACB的值;

2)若MN分別是AB、DC的中點(diǎn),連接MN,求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點(diǎn)AB30),與y軸交于點(diǎn)C0,3).

1)求拋物線的解析式;

2)若點(diǎn)M是拋物線上在x軸下方的動點(diǎn),過MMNy軸交直線BC于點(diǎn)N,求線段MN的最大值;

3E是拋物線對稱軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,B,EF為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,PCD邊上一點(diǎn)(DPCP),DP=1,AD=2,APB=90°.將ADP沿AP翻折得到ADPPD的延長線交邊AB于點(diǎn)M,過點(diǎn)BBNMPDC于點(diǎn)N

1)求線段PC之長;

2)求線段PN之長;

3)如圖2,連接AC,分別交PM,PB于點(diǎn)EF.求線段EF之長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)(1)如圖1,在ABC中,點(diǎn)D,E,Q分別在AB,AC,BC上,且DEBC,AQDE于點(diǎn)P.求證:.

2如圖,在ABC中,BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在ABC的邊上,連接AG,AF分別交DEMN兩點(diǎn).

如圖2,若AB=AC=1,直接寫出MN的長;

如圖3,求證MN2=DM·EN.

查看答案和解析>>

同步練習(xí)冊答案