【題目】如圖,在ABC中,∠ABC=90°,BDAC邊上的中線.

(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標注相應的字母:過點C作直線CE,使CEBC于點C,交BD的延長線于點E,連接AE;

(2)求證:四邊形ABCE是矩形.

【答案】(1)見解析;(2)見解析.

【解析】

1)根據(jù)題意作圖即可;
(2)先根據(jù)BDAC邊上的中線,AD=DC,再證明ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四邊形ABCE是矩形.

(1)解:如圖所示:E點即為所求;

(2)證明:∵CEBC,

∴∠BCE=90°,

∵∠ABC=90°,

∴∠BCE+ABC=180°,

ABCE,

∴∠ABE=CEB,BAC=ECA,

BDAC邊上的中線,

AD=DC,

ABDCED

,

∴△ABD≌△CED(AAS),

AB=EC,

∴四邊形ABCE是平行四邊形,

∵∠ABC=90°,

∴平行四邊形ABCE是矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商家預測“華為P30”手機能暢銷,就用1600元購進一批該型號手機殼,面市后果然供不應求,又購進6000元的同種型號手機殼,第二批所購買手機殼的數(shù)量是第一批的3倍,但進貨單價比第一批貴了2元。

1)第一批手機殼的進貨單價是多少元?

2)若兩次購進于機殼按同一價格銷售,全部傳完后,為使得獲利不少于2000元,那么銷售單價至少為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:O是直線AB上的一點,是直角,OE平分

(1)如圖1.若.求的度數(shù);

(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);

(3)將圖1中的繞頂點O順時針旋轉(zhuǎn)至圖2的位置,探究的度數(shù)之間的關系.寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點A、B、Cx軸上,點D、Ey軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M.

(1)求經(jīng)過B、E、C三點的拋物線的解析式;

(2)若點P線段FG上一個動點(與F、G不重合),當P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,請求出此時點P的坐標;

(3)若點P直線FG上一個動點,Q為拋物線上任一點,拋物線的頂點為N,探究以P、Q、M、N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一直角三角形紙片ABC,∠C=90°,∠B=30°,將該直角三角形紙片沿DE折疊,使點B與點A重合,DE=1,則BC的長度為( )

A. 2 B. +2 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形OABC中,已知點A、C兩點的坐標為A (,),C (2,0).

(1)求點B的坐標.

(2)將平行四邊形OABC向左平移個單位長度,求所得四邊形A′B′C′O′四個頂點的坐標.

(3)求平行四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近些年全國各地頻發(fā)霧霾天氣,給人民群眾的身體健康帶來了危害,某商場看到商機后決定購進甲、乙兩種空氣凈化器進行銷售.若每臺甲種空氣凈化器的進價比每臺乙種空氣凈化器的進價少300元,且用6000元購進甲種空氣凈化器的數(shù)量與用7500元購進乙種空氣凈化器的數(shù)量相同.

1)求每臺甲種空氣凈化器、每臺乙種空氣凈化器的進價分別為多少元?

2)若該商場準備進貨甲、乙兩種空氣凈化器共30臺,且進貨花費不超過42000元,問最少進貨甲種空氣凈化器多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖()為一條拉直的細線,兩點在上,且 若先固定點,將折向 ,使得重迭在BP上,如圖();再從圖()點及與點重迭處一起剪開,使得細線分成三段,則此三段細線由小到大的長度比為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球世界杯預選賽實行主客場的循環(huán)賽,即每兩支球隊都要在自己的主場和客場踢一場.共舉行比賽場,則參加比賽的球隊共有________支.

查看答案和解析>>

同步練習冊答案