【題目】已知方程組的解滿足為非正數(shù),為負數(shù).

1)求的取值范圍;

2)化簡:.

3)在m的取值范圍內,當m取何整數(shù)時,不等式2mx+x2m+1的解為x1?

【答案】(1)﹣2m≤3;(2)12m;(3)m=-1.

【解析】

1)首先對方程組進行化簡,根據(jù)方程的解滿足x為非正數(shù),y為負數(shù),就可以得出m的范圍;

2)根據(jù)絕對值的性質去絕對值符號,再合并即可得;

3)根據(jù)不等式2mx+x2m+1的解為x1得出2m+10-2m≤3,解此不等式得到關于m取值范圍,找出符合條件的m的值.

1)解原方程組得:,

x≤0y0,

解得﹣2m≤3;

2|m3||m+2|=3mm2=12m;

3))∵不等式(2m+1x>(2m+1)的解為x1,

2m+10-2m≤3,

∴在-2m-范圍內的整數(shù)m=-1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖:PCD是等腰直角三角形,∠DPC=90°,∠APB=135°

求證:(1)△PAC∽△BPD;

(2)若AC=3,BD=1,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°D、E分別是AB、AC的中點,連接CD.過EEFDCBC的延長線于F

1)證明:四邊形CDEF是平行四邊形;

2)若四邊形CDEF的周長是18cm,AC的長為6cm,求線段AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點EBC邊上的動點,連結AC、AM.

(1)求證:△ACM∽△ABE.

(2)如圖2,連結BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.

(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖EDBABC繞點B逆時針旋轉而來,D點落在AC上,DEAB于點F,AB=AC,DB=BF,則AFBF的比值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,垂直的角平分線于,的中點,則圖中兩個陰影部分面積之差的最大值為( )

A.1.5B.3C.4.5D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)直接寫出A點關于y軸對稱的點的坐標是______

2)將△ABC向右平移六個單位后得△A1B1C1,則線段AB平移掃過的面積是______

3)作出△A1B1C1關于x軸對稱的圖形△A2B2C2,畫出△A2B2C2,連接A2By軸于點D,直接寫出D點的坐標______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:

為宣傳社會主義核心價值觀,某社區(qū)居委會計劃制作1200個大小相同的宣傳欄.現(xiàn)有甲、乙兩個廣告公司都具備制作能力,居委會派出相關人員分別到這兩個廣告公司了解情況,獲得如下信息:

信息一:甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天;

信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.

根據(jù)以上信息,求甲、乙兩個廣告公司每天分別能制作多少個宣傳欄?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y果.下面有三個推斷:某次實驗投擲次數(shù)是500,計算機記錄“釘尖向上”的次數(shù)是308,則該次試驗“釘尖向上”的頻率是0.616;隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;若再次用計算機模擬實驗,則當投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.其中合理的是(  )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

同步練習冊答案