【題目】如圖1所示,A、E、F、C在同一直線上,AF=CE,過E、F分別作DE⊥AC,BF⊥AC,若AB=CD.
(1)試說明ME=MF.
(2)若將E、F兩點移至如圖2中的位置,其余條件不變,上述結論是否仍然成立?請說明理由.
【答案】(1)見解析;(2)成立,理由見解析;
【解析】
(1)由DE⊥AC,BF⊥AC得到∠AFB=90°,∠DEC=90°,可根據“HL”證明Rt△ABF≌Rt△CDE,則BF=DE,然后根據“ASA”可證明△BFM≌△DEM,根據全等的性質即可得到ME=MF;
(2)上述結論仍然成立.證明的方法與(1)一樣.
(1)證明:∵DE⊥AC,BF⊥AC,
∴∠AFB=90°,∠DEC=90°,
∵在Rt△ABF和Rt△CDE中,
,
∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE,
∵在△BFM和△DEM中,
,
∴△BFM≌△DEM(AAS),
∴ME=MF;
(2)上述結論仍然成立,理由如下:
與(1)一樣可證得Rt△ABF≌Rt△CDE得到BF=DE,
與(1)一樣可證得△BFM≌△DEM,
所以ME=MF.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數的圖象與軸正半軸交于點.
求證:該二次函數的圖象與軸必有兩個交點;
設該二次函數的圖象與軸的兩個交點中右側的交點為點,若,將直線向下平移個單位得到直線,求直線的解析式;
在的條件下,設為二次函數圖象上的一個動點,當時,點關于軸的對稱點都在直線的下方,求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點P到BE,BD,AC的距離恰好相等,則點P的位置:①在∠B的平分線上;②在∠DAC的平分線上;③在∠ECA的平分線上;④恰是∠B,∠DAC,∠ECA三條角平分線的交點,上述結論中,正確結論的個數有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊三角形ABC中,點P在△ABC內,點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求證:△ABP≌△ACQ;
(2)請判斷△APQ是什么三角形,試說明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=DB,∠1=∠2,請你添加一個適當的條件,使△ABC≌△DBE,請問添加下面哪個條件:①BC=BE;②AC=DE;③∠A=∠D;④∠ACB=∠DEB;不能判斷△ABC≌△DBE的有______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C 是路段 AB 的中點,兩人從 C 同時出發(fā),以相同的速度分別沿兩條直線行走,并同時到達 D,E 兩地,DA⊥AB,EB⊥AB,D,E 與路段AB 的距離相等嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC =3,BC =4,AB=5,BD平分∠ABC,如果M、N分別為BD、BC上的動點,那么CM+MN的最小值是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖象經過點A(3,3)、B(4,0)和原點O.P為二次函數圖象上的一個動點,過點P作x軸的垂線,垂足為D(m,0),并與直線OA交于點C.
(1)求直線OA和二次函數的解析式;
(2)當點P在直線OA的上方時,
①當PC的長最大時,求點P的坐標;
②當S△PCO=S△CDO時,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com