【題目】如圖,點M是△ABC的角平分線AT的中點,點D、E分別在AB、AC邊上,線段DE過點M,且∠ADE=∠C,那么△ADE和△ABC的面積比是

【答案】1:4
【解析】解:∵AT是△ABC的角平分線, ∵點M是△ABC的角平分線AT的中點,
∴AM= AT,
∵∠ADE=∠C,∠BAC=∠BAC,
∴△ADE∽△ACB,
=( 2=( 2=1:4,
所以答案是:1:4.
【考點精析】本題主要考查了相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方成同學(xué)看到一則材料:甲開汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地.設(shè)乙行駛的時間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關(guān)系如圖1所示. 方成思考后發(fā)現(xiàn)了如圖1的部分正確信息:乙先出發(fā)1h;甲出發(fā)0.5小時與乙相遇.
請你幫助方成同學(xué)解決以下問題:

(1)分別求出線段BC,CD所在直線的函數(shù)表達(dá)式;
(2)當(dāng)20<y<30時,求t的取值范圍;
(3)分別求出甲,乙行駛的路程S , S與時間t的函數(shù)表達(dá)式,并在圖2所給的直角坐標(biāo)系中分別畫出它們的圖象;
(4)丙騎摩托車與乙同時出發(fā),從N地沿同一公路勻速前往M地,若丙經(jīng)過 h與乙相遇,問丙出發(fā)后多少時間與甲相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為6cm的⊙O中,C、D為直徑AB的三等分點,點E、F分別在AB兩側(cè)的半圓上,∠BCE=∠BDF=60°,連接AE、BF,則圖中兩個陰影部分的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,點D、E分別在邊AB、AC上,聯(lián)結(jié)DE,那么下列條件中不能判斷△ADE和△ABC相似的是(
A.DE∥BC
B.∠AED=∠B
C.AE:AD=AB:AC
D.AE:DE=AC:BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB:BC=2:3,點E、F分別在邊CD、BC上,點E是邊CD的中點,CF=2BF,∠A=120°,過點A分別作AP⊥BE、AQ⊥DF,垂足分別為P、Q,那么 的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D、E是邊BC上的兩個點,且BD=DE=EC,過點C作CF∥AB交AE延長線于點F,連接FD并延長與AB交于點G;
(1)求證:AC=2CF;
(2)連接AD,如果∠ADG=∠B,求證:CD2=ACCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD內(nèi)兩點M、N,滿足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四邊形BMDN的面積是菱形ABCD面積的 ,則cosA=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:如圖,已知拋物線y=﹣x2+2x+3的圖象與x軸交于點A,B(A在B的右側(cè)),與y軸交于點C,對稱軸與拋物線交于點D,與x軸交于點E.

(1)求點A,B,C,D的坐標(biāo);
(2)求出△ACD的外心坐標(biāo);
(3)將△BCE沿x軸的正方向每秒向右平移1個單位,當(dāng)點E移動到點A時停止運動,若△BCE與△ADE重合部分的面積為S,運動時間為t(s),請直接寫出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一漁船自西向東追趕魚群,在A處測得某無名小島C在北偏東60°方向上,前進(jìn)2海里到達(dá)B點,此時測得無名小島C在東北方向上.已知無名小島周圍2.5海里內(nèi)有暗礁,問漁船繼續(xù)追趕魚群有無觸礁危險?(參考數(shù)據(jù): =1.414, =1.732)

查看答案和解析>>

同步練習(xí)冊答案