【題目】如圖,半徑為6cm的⊙O中,C、D為直徑AB的三等分點,點E、F分別在AB兩側的半圓上,∠BCE=∠BDF=60°,連接AE、BF,則圖中兩個陰影部分的面積為cm2

【答案】6
【解析】解:如圖作△DBF的軸對稱圖形△CAG,作AM⊥CG,ON⊥CE,
∵△DBF的軸對稱圖形△CAG,
由于C、D為直徑AB的三等分點,
∴△ACG≌△BDF,
∴∠ACG=∠BDF=60°,
∵∠ECB=60°,
∴G、C、E三點共線,
∵AM⊥CG,ON⊥CE,
∴AM∥ON,
,
在Rt△ONC中,∠OCN=60°,
∴ON=sin∠OCNOC= OC,
∵OC= OA=2,
∴ON= ×2=
∴AM=2 ,
∵ON⊥GE,
∴NE=GN= GE,
連接OE,
在Rt△ONE中,NE= = = ,
∴GE=2NE=2 ,
∴SAGE= GEAM= ×2 ×2 =6
∴圖中兩個陰影部分的面積為6 ,
所以答案是:6
【考點精析】本題主要考查了含30度角的直角三角形和勾股定理的概念的相關知識點,需要掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是(
A.如圖1,展開后測得∠1=∠2
B.如圖2,展開后測得∠1=∠2且∠3=∠4
C.如圖3,測得∠1=∠2
D.如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個古代車輪的碎片,小明為求其外圓半徑,連結外圓上的兩點A、B,并使AB與車輪內(nèi)圓相切于點D,做CD⊥AB交外圓于點C.測得CD=10cm,AB=60cm,則這個車輪的外圓半徑為cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,∠EAF=45°,延長CD到點G,使DG=BE,連結EF,AG.求證:EF=FG.
(2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設備共10臺.已知用90萬元購買A型號的污水處理設備的臺數(shù)與用75萬元購買B型號的污水處理設備的臺數(shù)相同,每臺設備價格及月處理污水量如下表所示:

污水處理設備

A型

B型

價格(萬元/臺)

m

m﹣3

月處理污水量(噸/臺)

220

180


(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側面和2個正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用). A方法:剪6個側面; B方法:剪4個側面和5個底面.

現(xiàn)有19張硬紙板,裁剪時x張用A方法,其余用B方法.
(1)用x的代數(shù)式分別表示裁剪出的側面和底面的個數(shù);
(2)若裁剪出的側面和底面恰好全部用完,問能做多少個盒子?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,CD⊥AB于點D,⊙D經(jīng)過點B,與BC交于點E,與AB交與點F.已知tanA= ,cot∠ABC= ,AD=8.
(1)⊙D的半徑;
(2)CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M是△ABC的角平分線AT的中點,點D、E分別在AB、AC邊上,線段DE過點M,且∠ADE=∠C,那么△ADE和△ABC的面積比是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若函數(shù)y=x2﹣3|x﹣1|﹣4x﹣3﹣b(b為常數(shù))的圖象與x軸恰好有三個交點,則常數(shù)b的值為

查看答案和解析>>

同步練習冊答案