【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,過點(diǎn)作軸的平行線,交軸于點(diǎn),且三角形的面積是.
()求點(diǎn),的坐標(biāo);
()點(diǎn),分別為線段,上的兩個動點(diǎn),點(diǎn)從點(diǎn)向左以個單位長度/秒運(yùn)動,同時點(diǎn)從點(diǎn)向點(diǎn)以個單位長度/秒運(yùn)動,如圖所示,設(shè)運(yùn)動時間為秒.
①當(dāng)時,求的取值范圍;
②是否存在一段時間,使得?若存在,求出的取值范圍;若不存在,說明理由.
【答案】(1)點(diǎn)坐標(biāo),點(diǎn)坐標(biāo);(2)①;② 存在,.
【解析】
(1)根據(jù)BC∥x軸,確定點(diǎn)B坐標(biāo),設(shè)點(diǎn)A坐標(biāo)為(x,0),根據(jù)三角形的面積公式構(gòu)建方程即可解決問題;
(2)①根據(jù)CM<AN,構(gòu)建不等式即可解決問題;
②根據(jù)S四邊形MNOB>S四邊形MNAC,構(gòu)建不等式即可解決問題.
解:(1)∵ 軸,
∴ 點(diǎn)坐標(biāo).
設(shè)點(diǎn)坐標(biāo)為,
由題意得 ,
解得 ,
∴ 點(diǎn)坐標(biāo);
(2)①,,
當(dāng)時,,解得。
∴.
② 存在
∵,
∴,,,,
,
,
∴,解得,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,以AB為直徑的圓分別交BC,AC于D,E兩點(diǎn),AD交BE于F點(diǎn),現(xiàn)給出下列命題:①DE+BD=AD;②△ABE與△ABD的面積差為ED2 , 則( 。
A.①是假命題,②是真命題 B.①是真命題,②是假命題
C.①是假命題,②是假命題 D.①是真命題,②是真命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】食品安全關(guān)乎民生,食品中添加過量的添加劑對人體有害,但適量的添加劑對人體無害且有利于食品的儲存.某飲料廠為了解A、B兩種飲料添加劑的添加情況,隨機(jī)抽檢了A種30瓶,B種70瓶,檢測發(fā)現(xiàn),A種每瓶比B種每瓶少1克添加劑,兩種共加入了添加劑270克,求A、B兩種飲料每瓶各加入添加劑多少克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞著點(diǎn)B順時針旋轉(zhuǎn)至,使得C點(diǎn)落在AB的延長線上的D點(diǎn)處,的邊BC恰好是的角平分線.
(1)試求旋轉(zhuǎn)角的度數(shù);
(2)設(shè)BE與AC的交點(diǎn)為點(diǎn)P,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為BC上一點(diǎn),BE=2CE,連接DE,F為DE中點(diǎn),以DF為直角邊作等腰Rt△DFG,連接BG,將△DFG繞點(diǎn)D順時針旋轉(zhuǎn)得△DF′G′,G′恰好落在BG的延長線上,連接F′G,若BG=2,則S△GF′G′=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,直線a為對稱軸,點(diǎn)A,點(diǎn)C在直線a上.
(1)作△ABC關(guān)于直線a的軸對稱圖形△ADC;
(2)若∠BAC=35°,則∠BDA= ;
(3)△ABD的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點(diǎn)A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F兩點(diǎn),再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線AP,交CD于點(diǎn)M,
(1)由題意可知,射線AP是 ;
(2)若∠CMA=33°,求∠CAB的度數(shù);
(3)若CN⊥AM,垂直為N,試說明:AN=MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P為線段BC上的一動點(diǎn),且和B、C不重合,連接PA,過P作PE⊥PA交CD所在直線于E.設(shè)BP=x,CE=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)若點(diǎn)P在線段BC上運(yùn)動時,點(diǎn)E總在線段CD上,求m的取值范圍;
(3)如圖2,若m=4,將△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是長方形紙帶,將紙帶沿折疊成圖2,再沿即折疊成圖3,若在圖1中∠DEF=a,則圖3中∠CFE用含有a的式子表示=_______(0<a<60°) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com