【題目】已知,如圖一:中,平分,CO平分外角.
(1)①若,則的度數(shù)為________.
②若,則的度數(shù)為________.
(2)試寫出與的關(guān)系,并加以證明.
(3)解決問題,如圖二,平分,平分, 依此類推,平分,平分,平分, 依此類推,平分,若,請根據(jù)第(2)間中得到的結(jié)論直接寫出的度數(shù)為________.
科目:初中數(shù)學 來源: 題型:
【題目】某公司有A、B兩種型號的客車共20輛,它們的載客量、每天的租金如表所示.已知在20輛客車都坐滿的情況下,共載客720人.
A型號客車 | B型號客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
(1)求A、B兩種型號的客車各有多少輛?
(2)某中學計劃租用A、B兩種型號的客車共8輛,同時送七年級師生到沙家浜參加社會實踐活動,已知該中學租車的總費用不超過4600元.
①求最多能租用多少輛A型號客車?
②若七年級的師生共有305人,請寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B分別是x軸上位于原點左右兩側(cè)的點,點P(2,p)在第一象限,直線PA交y軸于點C(0,3),直線PB交y軸于點D,△AOP的面積為12;
(1)求△COP的面積;
(2)求點A的坐標及p的值;
(3)若△BOP與△DOP的面積相等,求直線BD的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用四個螺絲將四條不可彎曲的本條圍成一個木框(形狀不限),不記螺絲大小,其中相鄰兩螺絲之間的距離依次為3,4,5,7.且相鄰兩本條的夾角均可調(diào)整,若調(diào)整木條的夾角時不破壞此木框,則任意兩個螺絲之間的最大距離是( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,直至得到C6,若點P(11,m)在第6段拋物線C6上,則m=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,并解決后面的問題.
材料:一般地,個相同的因數(shù)相乘:個記為,如,此時,3叫做以2為底8的對數(shù),記為(即).
一般地,若(且,),則叫做以為底的對數(shù),記為(即).如,則4叫做以3為底81的對數(shù),記為(即).
問題:(1)計算以下各對數(shù)的值:________,________,________.
(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式?、、之間又滿足怎樣的關(guān)系式?______________________________________________________________________________
(3)由(2)的結(jié)果,你能歸納出一個一般性的結(jié)論嗎?
____________________(且,,)
(4)根據(jù)冪的運算法則:以及對數(shù)的含義證明(3)中結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】第一屆中非經(jīng)貿(mào)博覽會于年月日至日在長沙舉辦,為了抓住商機,某服裝店決定購進甲、乙兩種文化衫進行銷售,若購進甲種文化衫件,乙種文化衫件,需要元;若購進甲種文化衫件,乙種文化衫件,需要元.
(1)求購進甲、乙兩種文化衫每件各需多少元?
(2)若該服裝店決定用不超過元的資金購進這兩種服裝共件,且用于購買甲種文化衫的資金不低于購買乙種文化衫的資金,那么該商店共有哪幾種進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長是關(guān)于x的方程x2-mx+-=0的兩個實數(shù)根.
(1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么□ABCD的周長是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com