【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接BC,AC,過(guò)點(diǎn)C作直線CD⊥AB于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),直線CE交⊙O于點(diǎn)F,連接BF與直線CD延長(zhǎng)線交于點(diǎn)G.求證:BC2=BG·BF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】模型建立:如圖1,等腰直角三角形中,,,直線經(jīng)過(guò)點(diǎn),過(guò)作于,過(guò)作于.
(1)求證:;
(2)模型應(yīng)用:
①已知直線l1:與y軸交于點(diǎn),將直線l1繞著點(diǎn)順時(shí)針旋轉(zhuǎn)45°至l2,如圖2,求l2的函數(shù)解析式;
②如圖3,長(zhǎng)方形ABCO,為坐標(biāo)原點(diǎn),的坐標(biāo)為(8,6),、分別在坐標(biāo)軸上,是線段上動(dòng)點(diǎn),點(diǎn)是直線上的一點(diǎn),若△APD是以點(diǎn)D為直角頂點(diǎn)的等腰Rt△,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ACB=∠ECD=90°,AC=BC,EC=DC,點(diǎn)D在AB邊上.
(1)求證:△ACE≌△BCD.
(2)若AE=3,AD=2.求ED的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=900,AC=10,點(diǎn)E在邊CB上,CE=,點(diǎn)D在邊AB的中點(diǎn)上,CD⊥AE,垂足為F,則AB的長(zhǎng)=__
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 平面直角坐標(biāo)系中,過(guò)點(diǎn)C(28,28)分別作x軸、y軸的垂線,垂足分別為B、A,一次函數(shù)y=x+3的圖像分別與x軸和CB交于點(diǎn)D、E,點(diǎn)P 是DE中點(diǎn),連接AP.
⑴ 求點(diǎn)D與點(diǎn)E的坐標(biāo); ⑵求證:△ADO≌△AEC;⑶ 求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B在拋物線L1上(點(diǎn)A與點(diǎn)B不重合),我們把這樣的兩拋物線L1、L2稱為“伴隨拋物線”,可見(jiàn)一條拋物線的“伴隨拋物線”可以有多條.
(1)拋物線L1:y=-x2+4x-3與拋物線L2是“伴隨拋物線”,且拋物線L2的頂點(diǎn)B的橫坐標(biāo)為4,求拋物線L2的表達(dá)式;
(2)若拋物線y=a1(x-m)2+n的任意一條“伴隨拋物線”的表達(dá)式為y=a2(x-h)2+k,請(qǐng)寫出a1與a2的關(guān)系式,并說(shuō)明理由;
(3)在圖②中,已知拋物線L1:y=mx2-2mx-3m(m>0)與y軸相交于點(diǎn)C,它的一條“伴隨拋物線”為L2,拋物線L2與y軸相交于點(diǎn)D,若CD=4m,求拋物線L2的對(duì)稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲.乙兩種商品原來(lái)的單價(jià)和為100元,因市場(chǎng)變化,甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來(lái)的單價(jià)和提高了20%.若設(shè)甲.乙兩種商品原來(lái)的單價(jià)分別為x元.y元,則可列方程組為_________________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出△ABC 關(guān)于 y 軸對(duì)稱的△A1B1C1并寫出坐標(biāo);
(2)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1的函數(shù)解析式為y=﹣2x+4,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過(guò)點(diǎn)A、B,直線l1、l2交于點(diǎn)C.
(1)求直線l2的函數(shù)解析式;
(2)求△ADC的面積;
(3)在直線l2上是否存在點(diǎn)P,使得△ADP面積是△ADC面積的2倍?如果存在,請(qǐng)求出P坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com