【題目】如圖,在Rt△ABC中,∠ACB=900,AC=10,點E在邊CB上,CE=,點D在邊AB的中點上,CD⊥AE,垂足為F,則AB的長=__
【答案】
【解析】
取BC的中點G,連接DG,根據(jù)中位線的性質(zhì)可得:DG∥AC,DG=,然后利用勾股定理即可求出AE,再利用△ACE面積的兩種求法求出CF,利用勾股定理即可求出EF,然后利用相似三角形的判定即可證出:△DCG∽△ECF,列出比例式即可求出DC,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出AB的長.
解:取BC的中點G,連接DG,
∵點D在邊AB的中點
∴DG是△ABC的中位線
∴DG∥AC,DG=
∴∠DGC=90°
根據(jù)勾股定理:AE=
∵S△ACE=
解得:CF=6
根據(jù)勾股定理:EF=
∵∠DCG=∠ECF,∠DGC=∠EFC=90°
∴△DCG∽△ECF
∴
∴
解得:DC=
在Rt△ABC中,AB=2CD=
故答案為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為菱形ABCD對角線的交點,M是射線CA上的一個動點(點M與點C、O、A都不重合),過點A、C分別向直線BM作垂線段,垂足分別為E、F,連接OE,OF.
(1)①依據(jù)題意補全圖形;
②猜想OE與OF的數(shù)量關(guān)系為_________________.
(2)小東通過觀察、實驗發(fā)現(xiàn)點M在射線CA上運動時,(1)中的猜想始終成立.
小東把這個發(fā)現(xiàn)與同學(xué)們進行交流,通過討論,形成了證明(1)中猜想的幾種想法:
想法1:由已知條件和菱形對角線互相平分,可以構(gòu)造與△OAE全等的三角形,從而得到相等的線段,再依據(jù)直角三角形斜邊中線的性質(zhì),即可證明猜想;
想法2:由已知條件和菱形對角線互相垂直,能找到兩組共斜邊的直角三角形,例如其中的一組△OAB和△EAB,再依據(jù)直角三角形斜邊中線的性質(zhì),菱形四邊相等,可以構(gòu)造一對以OE和OF為對應(yīng)邊的全等三角形,即可證明猜想.
……
請你參考上面的想法,幫助小東證明(1)中的猜想(一種方法即可).
(3)當(dāng)∠ADC=120°時,請直接寫出線段CF,AE,EF之間的數(shù)量關(guān)系是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)研究課上,老師帶領(lǐng)大家探究《折紙中的數(shù)學(xué)問題》時,出示如圖1所示的長方形紙條,其中,.然后在紙條上任意畫一條截線段,將紙片沿折疊,與交于點,得到.如圖2所示:
探究:
(1)若,______°;
(2)改變折痕位置,始終是______三角形,請說明理由;
應(yīng)用:
(3)愛動腦筋的小明在研究的面積時,發(fā)現(xiàn)邊上的高始終是個不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出的面積最小值為,此時的大小可以為______°;
(4)小明繼續(xù)動手操作,發(fā)現(xiàn)了面積的最大值.請你求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。
[來
根據(jù)以上信息,解答下列問題:
(1)設(shè)租車時間為小時,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出,關(guān)于的函數(shù)表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系XOY中,一次函數(shù)y=kx-k的圖象經(jīng)過A(2,2),與x軸、y軸分別交于點C、點B.
(1)觀察圖像,直接寫出使y≥0的x的取值范圍;
(2)求一次函數(shù)的解析式;
(3)若點P是x軸上一點,且滿足△PAB的面積是6,請求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件:①∠A=45°,AB=12,AC=15,∠A′=45°,A′B′=16,A′C′=20;②∠A=47°,AB=1.5,AC=2,∠B′=47°,A′B′=2.8,B′C′=2.1;③∠A=47°,AB=2,AC=3,∠B′=47°,A′B′=4,B′C′=6,其中能判定△ABC與△A′B′C′相似的有 ( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C是⊙O上一點,連接BC,AC,過點C作直線CD⊥AB于點D,點E是AB上一點,直線CE交⊙O于點F,連接BF與直線CD延長線交于點G.求證:BC2=BG·BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:
①;②;③;④;⑤;⑥當(dāng)時,隨的增大而增大.
其中正確的說法有________(寫出正確說法的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形(頂點是網(wǎng)格線交點的三角形)的頂點的坐標(biāo)分別是.
(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請畫出關(guān)于軸對稱的;
(3)請在軸上求作一點,使的周長最小,并寫出點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com