【題目】如圖,在四邊形ABCD中,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,且CD=CB,∠ABC+∠ADC=180°.求證:AE=(AB+AD).
【答案】見(jiàn)解析
【解析】試題分析:過(guò)C作CM⊥AD于M,于是得到△MAC≌△EAC,根據(jù)全等三角形的性質(zhì)得到AM=AE,證Rt△DMC≌Rt△BEC,根據(jù)全等三角形的性質(zhì)得到BE=DM,求出AB+AD=AE+BE+AD=AE+DM+AD=2AM=2AE,即可得出答案..
試題解析:證明:過(guò)C作CM⊥AD于M,
∵CE⊥AB,
∴∠M=∠CEB=90°,
∵∠ABC+∠ADC=180°,∠ADC+∠MDC=180°,
∴∠B=∠MDC,
∵AC平分∠BAD,CM⊥AD,CE⊥AB,
∴CM=CE,∠MAC=∠EAC,
在△MAC和△EAC中,
,
∴△MAC≌△EAC(AAS),
∴AM=AE,
∵∠M=∠BEC=90°,
∴在Rt△DMC和Rt△BEC中,,
∴Rt△DMC≌Rt△BEC(HL),
∴BE=DM,
∴AB+AD=AE+BE+AD=AE+DM+AD=2AM=2AE,
即AE=(AB+AD).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O在直線AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OE與OC重合,然后繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)OE與OB重合時(shí)停止旋轉(zhuǎn).
(1)當(dāng)OD在OA與OC之間,且∠COD=20°時(shí),則∠AOE=______;
(2)試探索:在△ODE旋轉(zhuǎn)過(guò)程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)說(shuō)明理由;
(3)在△ODE的旋轉(zhuǎn)過(guò)程中,若∠AOE=7∠COD,試求∠AOE的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E,連接BD,CD.
(1)求證:BD=CD;
(2)請(qǐng)判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),且DG⊥CE,垂足為點(diǎn)G.
(1)求證:DC=BE;
(2)若∠AEC=54°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角板如圖①放置,圖②是由它抽象出的幾何圖形,點(diǎn)B,C,E在同一條直線上,連接CD.求證:CD⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙是的外接圓,半徑為,直線與⊙相切,切點(diǎn)為,,與間的距離為.
()僅用無(wú)刻度的直尺,畫出一條弦,使這條弦將分成面積相等的兩部分(保留作圖痕跡,不寫畫法).
()求弦的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是邊AB上的動(dòng)點(diǎn),若在邊AC,BC上分別有點(diǎn)E,F,使得
AE=AD,BF=BD.
(1)設(shè)∠C=α,求∠EDF(用含α的代數(shù)式表示);
(2)尺規(guī)作圖:分別在邊AB,AC上確定點(diǎn)P,Q(PQ不與DE平行或重合),使得
∠CPQ=∠EDF.(保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的邊AB長(zhǎng)為4cm,DE平分∠ADC,若∠B=80°,∠DAE=50°,求平行四邊形ABCD的周長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE =12,CE =5,則平行四邊形ABCD的周長(zhǎng)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com