【題目】某公司計劃開發(fā)、兩種戶型樓盤,設(shè)戶型套,戶型套,且兩種戶型的函數(shù)關(guān)系滿足,經(jīng)市場調(diào)研,每套戶型的成本價和預售價如下表所示:
樓盤戶型 | ||
成本價(萬元/套) | 60 | 80 |
預售價(萬元/套) | 80 | 120 |
若公司最多投入開發(fā)資金為14000萬元,所獲利潤為萬元,
(1)求與的函效關(guān)系式和自變量的取值范圍
(2)售完這批樓盤,公司所獲得的最大利潤是多少?
(3)公司在實際銷售過程中,其他條件不變,戶型每套銷售價格提高()萬元,且限定戶型最多開發(fā)120套,則公司如何建房,利潤最大?(注:利潤=售價-成本.)
【答案】(1)=-20x+8000,100≤x≤200且x為整數(shù);(2)最大利潤為: 6000萬;(3)當5≤m<20時,開發(fā)公司建A戶型100套,B戶型100套,利潤最大,當m=20時,開發(fā)公司建A戶型100≤x≤120之內(nèi)的整數(shù)套,獲利最大,當20<m≤22時,開發(fā)公司建A戶型120套,B戶型80套,利潤最大.
【解析】
(1)根據(jù)利潤=售價-成本,列出函數(shù)解析式,根據(jù)公司最多投入開發(fā)資金為14000萬元,列出不等式,即可求解;
(2)根據(jù)一次函數(shù)的增減性,結(jié)合自變量的取值范圍,即可求解;
(3)根據(jù)題意,列出關(guān)于x的解析式,再根據(jù)一次函數(shù)的性質(zhì),分類討論,即可得到結(jié)論.
(1)由題意得: =(80-60)x+(120-80)(200-x)=-20x+8000,
∵60x+80(200-x)≤14000,
∴x≥100
又∵y≥0
∴-x+200≥0,
∴x≤200
綜上,100≤x≤200且x為整數(shù);
(2)∵=-20x+8000,k=-20<0,
∴隨x的增大而減小,
∴當x=100時,最大,最大利潤為:-20×100+8000=6000(萬元);
(3)由題意得:=(80+m-60)x+(120-80)(200-x)=(m-20)x+8000(100≤x≤120),
①當5≤m<20時,m-20<0,隨x的增大而減小,
∴當x=100時,有最大利潤;
②當m=20時,m-20=0,=8000;
③當20<m≤22時,m-20>0,隨x的增大而增大,
∴當x=120時,有最大利潤.
答:當5≤m<20時,開發(fā)公司建A戶型100套,B戶型100套,利潤最大,當m=20時,開發(fā)公司建A戶型100≤x≤120之內(nèi)的整數(shù)套,獲利最大,當20<m≤22時,開發(fā)公司建A戶型120套,B戶型80套,利潤最大.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點E、F分別是AB、CD上的點,DE、AF分別交BC于G、H,∠A=∠D,∠1=∠2,試說明∠B=∠C.閱讀下面的解題過程,在橫線上補全推理過程或依據(jù).
解:∵∠1=∠2(已知)
∠1=∠3(______________________________)
∴∠2=∠3(等量代換)
∴AF∥DE(_____________________________)
∴∠4=∠D(__________________________________)
又∵∠A=∠D (已知)
∴∠4=∠A(等量代換)
______(____________________________________)
∴∠B=∠C (_________________________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形ABC三點的坐標為A(-2,1),B(1,2),C(k,h)
(1)在直角坐標系上畫出點A,B.
(2)若點C(-2,-1)時,求三角形ABC的面積.
(3)若點C在y軸上,當三角形ABC的面積為6時,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某班同學在一次體檢中每分鐘心跳的頻數(shù)分布直方圖(次數(shù)均為整數(shù)).已知該班只有5位同學的心跳每分鐘75次,請觀察圖示,指出下列說法不一定正確的是( )
A. 數(shù)據(jù)75落在第二小組 B. 第四小組的頻率為0.1
C. 心跳為每分鐘75次的人數(shù)占該班體檢人數(shù)的 D. 心跳是65次的人數(shù)最多
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在讀書月活動中,學校準備購買一批課外讀物,為使課外讀物滿足同學們的需求,學校就“我最喜愛的課外讀物”從文學、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學只選一類),如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了_____名同學;
(2)條形統(tǒng)計圖中,m=_____,n=_______;
(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是______度;
(4)學校計劃購買課外讀物5000冊,請根據(jù)樣本數(shù)據(jù),估計學校購買其他類讀物多少冊比較合理?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種動物的身高y(dm)是其腿長x(dm)的一次函數(shù).當動物的腿長為6dm時,身高為45.5dm;當動物的腿長為14dm時,身高為105.5dm.
(1)寫出y與x之間的關(guān)系式;
(2)當該動物腿長10dm時,其身高為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=﹣ x+b(b為常數(shù))的圖象與x軸交于點A(2,0),與y軸交于點B,與反比例函數(shù)y= 的圖象交于點C(﹣2,m).
(1)求點C的坐標及反比例函數(shù)的表達式;
(2)過點C的直線與y軸交于點D,且S△CBD:S△BOC=2:1,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABC中,D是AB上的一點,且AD=2BD,E是BC的中點,CD、AE相交于點F.若EFC的面積為1,則ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對x,y定義一種新運算T,規(guī)定:T(x,y)=(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T(0,1)==b.
(1)已知T(2,1)=
①求a,b的值;
②若關(guān)于m的不等式組恰好有3個整數(shù)解,求p的取值范圍;
(2)若T(x,y)=T(y,x)對任意有理數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應滿足怎樣的關(guān)系式?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com