【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是( )
A.88°
B.92°
C.106°
D.136°
【答案】D
【解析】解:∵∠BOD=88°, ∴∠BAD=88°÷2=44°,
∵∠BAD+∠BCD=180°,
∴∠BCD=180°﹣44°=136°,
即∠BCD的度數(shù)是136°.
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解圓周角定理(頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半),還要掌握?qǐng)A內(nèi)接四邊形的性質(zhì)(把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形2、經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,Rt△ABC中,∠BAC=90°,以AB為直徑的⊙O交BC于D,OD交AC的延長(zhǎng)線于E,OA=1,AE=3.則下列結(jié)論正確的有 . ①∠B=∠CAD;②點(diǎn)C是AE的中點(diǎn);③ = ;④tan B= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,點(diǎn)B的坐標(biāo)為(3,0),頂點(diǎn)C的坐標(biāo)為(1,4).
(1)求二次函數(shù)的解析式和直線BD的解析式;
(2)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)M,當(dāng)點(diǎn)P在第一象限時(shí),求線段PM長(zhǎng)度的最大值;
(3)在拋物線上是否存在異于B、D的點(diǎn)Q,使△BDQ中BD邊上的高為2 ?若存在求出點(diǎn)Q的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖示一架水平飛行的無(wú)人機(jī)AB的尾端點(diǎn)A測(cè)得正前方的橋的左端點(diǎn)P的俯角為α其中tanα=2 ,無(wú)人機(jī)的飛行高度AH為500 米,橋的長(zhǎng)度為1255米.
①求點(diǎn)H到橋左端點(diǎn)P的距離;
②若無(wú)人機(jī)前端點(diǎn)B測(cè)得正前方的橋的右端點(diǎn)Q的俯角為30°,求這架無(wú)人機(jī)的長(zhǎng)度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2= (x﹣3)2+1交于點(diǎn)A(1,3),過(guò)點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論: ①無(wú)論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時(shí),y2﹣y1=4;
④2AB=3AC;
其中正確結(jié)論是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:x1 , x2是一元二次方程x2+2ax+b=0的兩根,且x1+x2=3,x1x2=1,則a、b的值分別是( )
A.a=﹣3,b=1
B.a=3,b=1
C. ,b=﹣1
D. ,b=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點(diǎn),連結(jié)DE.
(1)DE與半圓O相切嗎?若相切,請(qǐng)給出證明;若不相切,請(qǐng)說(shuō)明理由;
(2)若AD、AB的長(zhǎng)是方程x2﹣10x+24=0的兩個(gè)根,求直角邊BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A為平面內(nèi)一點(diǎn),給出如下定義:過(guò)點(diǎn)A作AB⊥y軸于點(diǎn)B,作正方形ABCD(點(diǎn)A,B,C,D順時(shí)針排列),即稱正方形ABCD為以A為圓心,OA為半徑的⊙A的“友好正方形”.
(1)如圖1,若點(diǎn)A的坐標(biāo)為(1,1),則⊙A的半徑為 .
(2)如圖2,點(diǎn)A在雙曲線y= (x>0)上,它的橫坐標(biāo)是2,正方形ABCD是⊙A的“友好正方形”,試判斷點(diǎn)C與⊙A的位置關(guān)系,并說(shuō)明理由.
(3)如圖3,若點(diǎn)A是直線y=﹣x+2上一動(dòng)點(diǎn),正方形ABCD為⊙A的“友好正方形”,且正方形ABCD在⊙A的內(nèi)部時(shí),請(qǐng)直接寫(xiě)出點(diǎn)A的橫坐標(biāo)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com