【題目】如圖,一塊鐵片邊緣是由拋物線和線段AB組成,測得AB=20cm,拋物線的頂點到AB邊的距離為25cm.現(xiàn)要沿AB邊向上依次截取寬度均為4cm的矩形鐵皮,從下往上依次是第一塊,第二塊如圖所示.已知截得的鐵皮中有一塊是正方形,則這塊正方形鐵皮是第________塊.

【答案】6

【解析】

根據(jù)已知條件建立坐標系,得出此拋物線的頂點坐標以及圖象與x軸的交點坐標,求出二次函數(shù)解析式,再根據(jù)M點的橫坐標,求出縱坐標,即可解決問題;

解:如圖,建立平面直角坐標系.

AB=20cm,拋物線的頂點到AB邊的距離為25cm,

此拋物線的頂點坐標為:(10,25),圖象與x軸的交點坐標為:(0,0),(20,0),

拋物線的解析式為: ,

A(0,0)在拋物線上,

0=100a+25,解得 ,

拋物線的解析式為: ,

現(xiàn)要沿AB邊向上依次截取寬度均為4cm的矩形鐵皮,

截得的鐵皮中有一塊是正方形時,正方形邊長一定是4cm.

當四邊形DEFM是正方形時,DE=EF=MF=DM=4cm,

M點的橫坐標為AN-MK=10-2=8,

即x=8,代入,得y=24,

KN=24,24÷4=6,

這塊正方形鐵皮是第六塊.

故答案是6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的對角線AC,BD相交于點O.

(1)如圖1,E,G分別是OB,OC上的點,CE與DG的延長線相交于點F.若DF⊥CE,求證:OE=OG;

(2)如圖2,H是BC上的點,過點H作EH⊥BC,交線段OB于點E,連結DH交CE于點F,交OC于點G.若OE=OG,

①求證:∠ODG=∠OCE;

②當AB=1時,求HC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于AB兩點(點A在點B的左側),點AB的橫坐標是一元二次方程x2﹣4x﹣12=0的兩個根.

(1)求出點A,B的坐標.

(2)求出該二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC=6,ACB90°,ABC的平分線交AC于點DEAB上一點,且BE=BC,CFEDBD于點F,連接EF,ED.

1)求證:四邊形CDEF是菱形.

2)當∠ACB 度時,四邊形CDEF是正方形,請給予證明;并求此時正方形的邊長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于點A(﹣, 0),點B(2,0),與y軸交于點C(0,1),連接BC.

(1)求拋物線的解析式;

(2)N為拋物線上的一個動點,過點NNP⊥x軸于點P,設點N的橫坐標為t(﹣<t<2),求△ABN的面積st的函數(shù)解析式;

(3)若0<t<2t≠0時,△OPN∽△COB,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=AC,BC=20,DEABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DNME相交于點O.若OMN是直角三角形,則DO的長是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解全校1600名學生每周課外體育活動時間的情況,隨機調查了其中的部分學生,對這些學生每周課外體育活動時間x(單位:小時)進行了統(tǒng)計,根據(jù)所得數(shù)據(jù)繪制了一幅統(tǒng)計圖,根據(jù)以上信息及統(tǒng)計圖解答下列問題

1)本次接受隨機抽樣調查的學生人數(shù)為______

2)求這些學生每周課外體育活動時間的平均數(shù)________;

3)估計全校學生每周課外體育活動時間不少于4小時的人數(shù)________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知邊長為5的菱形ABCD中,對角線AC長為6,點E在對角線BD上且tanEAC=,則BE的長為_____

查看答案和解析>>

同步練習冊答案