【題目】如圖,在中,,CD是高,BE平分∠ABC交CD于點E,EF∥AC交AB于點F,交BC于點G.在結(jié)論:(1) ;(2) ;(3);(4) 中,一定成立的有( )
A.1個B.2個C.3個D.4個
【答案】B
【解析】
根據(jù)兩直線平行,同旁內(nèi)角互補求出∠CGE=∠BCA=90°,然后根據(jù)等角的余角相等即可求出∠EFD=∠BCD;只有△ABC是等腰直角三角形時AD=CD,CG=EG;利用“角角邊”證明△BCE和△BFE全等,然后根據(jù)全等三角形對應(yīng)邊相等可得BF=BC.
∵EF∥AC,∠BCA=90°,
∴∠CGE=∠BCA=90°,
∴∠BCD+∠CEG=90°,
又∵CD是高,
∴∠EFD+∠FED=90°,
∵∠CEG=∠FED(對頂角相等),
∴∠EFD=∠BCD,故(1)正確;
只有∠A=45°,即△ABC是等腰直角三角形時,AD=CD,CG=EG而立,故(2)(3)不一定成立,錯誤;
∵BE平分∠ABC,
∴∠EBC=∠EBF,
在△BCE和△BFE中,
,
∴△BCE≌△BFE(AAS),
∴BF=BC,故(4)正確,
綜上所述,正確的有(1)(4)共2個.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】某公司技術(shù)人員用“沿直線AB折疊檢驗塑膠帶兩條邊緣線a、b是否互相平行”.
(1)如圖1,測得∠1=∠2,可判定a∥b嗎?請說明理由;
(2)如圖2,測得∠1=∠2,且∠3=∠4,可判定a∥b嗎?請說明理由;
(3)如圖3,若要使a∥b,則∠1與∠2應(yīng)該滿足什么關(guān)系式?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形DBFE是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路a經(jīng)過三個景點A、B、C,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點D,經(jīng)測量景點D位于景點A的北偏東30°方向8km處,位于景點B的正北方向,還位于景點C的北偏西75°方向上,已知AB=5km.
(1)景區(qū)管委會準備由景點D向公路a修建一條距離最短的公路,不考慮其它因素,求出這條公路的長;(結(jié)果精確到0.1km)
(2)求景點C與景點D之間的距離.(結(jié)果精確到1km)
(參考數(shù)據(jù): =1.73, =2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用兩種正多邊形鋪滿地面,其中一種是正八邊形,則另一種正多邊形是( )。
A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應(yīng)用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD, ,.求度數(shù).
小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得 _______.
問題遷移:如圖3,AD∥BC,點P在射線OM上運動, , .
(1)當點P在A、B兩點之間運動時, 、、之間有何數(shù)量關(guān)系?請說明理由.
(2)如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出、、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 中, , =120°,以為一個頂點的等邊三角形繞點A在內(nèi)旋轉(zhuǎn), 、所在的直線與邊分別交于點、,若點關(guān)于直線的對稱點為,當是以點為直角頂點的直角三角形時, 的長為__
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,連接EC.
(1)求證:AD=EC;
(2)當∠BAC=Rt∠時,求證:四邊形ADCE是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com