【題目】探究規(guī)律,完成相關(guān)題目.
老師說:“我定義了一種新的運算,叫(加乘)運算.”
然后老師寫出了一些按照(加乘)運算的運算法則進行運算的算式:
(+5)(+2)=+7;(-3)(-5)=+8;
(-3)(+4)=-7; (+5)(-6)=-11;
0(+8)=8;(-6)0=6.
小明看了這些算式后說:“我知道老師定義的(加乘)運算的運算法則了.”
聰明的你也明白了嗎?
(1)歸納(加乘)運算的運算法則:
兩數(shù)進行(加乘)運算時,運算法則是什么.
特別地,0和任何數(shù)進行(加乘)運算,或任何數(shù)和0進行(加乘)運算運算法則是什么.
(2)計算:
①()[()].(括號的作用與它在有理數(shù)運算中的作用一致)
② 若()( ).求的值.
【答案】(1)見解析;(2)①-8 ②3或1
【解析】
首先根據(jù)(加乘)運算的運算法則進行運算的算式,歸納出(加乘)運算的運算法則即可;然后根據(jù)0(+8)=8;(-6)0=6,可得:0和任何數(shù)進行(加乘)運算,或任何數(shù)和0進行(加乘)運算,等于這個數(shù)的絕對值.
根據(jù)新的運算定義計算即可.
歸納(加乘)運算的運算法則:兩數(shù)進行(加乘)運算時,同號得正,異號得負,并把絕對值相加.特別地,0和任何數(shù)進行(加乘)運算,或任何數(shù)和0進行(加乘)運算,等于這個數(shù)的絕對值.
①()[()]=-53=-8;
②()( ) ,,解得b=2,,a
+b=3或1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知直線l1:y=mx(m≠0) 與直線l2:y=ax+b(a≠0) 相交于點 A(1,2),直線l2與 x軸交于點B(3,0).
(1)分別求直線l1 和l2的表達式;
(2)過動點P(0,n)且平行于x軸的直線與l1 ,l2的交點分別為C ,D,當點 C 位于點 D 左方時,寫出 n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx﹣3經(jīng)過(﹣1,0),(3,0)兩點,與y軸交于點C,直線y=kx與拋物線交于A,B兩點.
(1)寫出點C的坐標并求出此拋物線的解析式;
(2)當原點O為線段AB的中點時,求k的值及A,B兩點的坐標;
(3)是否存在實數(shù)k使得△ABC的面積為 ?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,能否在AB上確定一點E,使△BDE的周長等于AB的長?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC與Rt△OCD中,∠ACB=∠DCO=90°,O為AB的中點.
(1)求證:∠B=∠ACD.
(2)已知點E在AB上,且BC2=ABBE.
(i)若tan∠ACD= ,BC=10,求CE的長;
(ii)試判定CD與以A為圓心、AE為半徑的⊙A的位置關(guān)系,并請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正確的個數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與坐標軸分別交于A(﹣2,0),B(0,1)兩點,與反比例函數(shù)的圖象在第一象限交于點C(4,n),求一次函數(shù)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將含有30°角的直角三角板OAB如圖放置在平面直角坐標系中,OB在x軸上,若OA=2,將三角板繞原點O順時針旋轉(zhuǎn)75°,則點A的對應(yīng)點A′的坐標為( )
A.( ,﹣1)
B.(1,﹣ )
C.( ,﹣ )
D.(﹣ , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,對角線AC、BD相交于點O,E是OC的中點,連接BE,過點A作AM⊥BE于點M,交BD于點F.
(1)求證:AF=BE;
(2)求點E到BC邊的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com