【題目】已知:如圖,∠B=∠C,∠ADB=∠DEC,AB=DC.
(1)求證:△ADE 為等腰三角形.
(2)若∠B=60°,求證:△ADE 為等邊三角形.
【答案】(1)詳見解析;(2)詳見解析
【解析】
(1)由題意證的ABD ≌ DCE (SAS ),即可得出AD=DE,即△ADE 為等腰三角形;
(2)通過(1)里面證的全等,得出∠BDA+∠BAD=∠BDA+∠CDE=120°,進(jìn)而得出∠ADE=60°,△ADE 為等腰三角形即可證的△ADE 為等邊三角形.
證明:①在 ABD 和 DCE 中,
ABD ≌ DCE (SAS )
DA DE
即 ADE 為等腰三角形
② ABD ≌ DCE
BAD CDE
B 60
BAD ADB 120
CDE ADB 120
ADE 60
又 ADE 為等腰三角形
ADE 為等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若此方程的兩實(shí)數(shù)根x1,x2滿足x12+x22=11,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次科技知識(shí)競賽中,兩組學(xué)生成績統(tǒng)計(jì)如下表,通過計(jì)算可知兩組的方差為 , .下列說法:
①兩組的平均數(shù)相同;
②甲組學(xué)生成績比乙組學(xué)生成績穩(wěn)定;
③甲組成績的眾數(shù)>乙組成績的眾數(shù);
④兩組成績的中位數(shù)均為80,但成績≥80的人數(shù)甲組比乙組多,從中位數(shù)來看,甲組成績總體比乙組好;⑤成績高于或等于90分的人數(shù)乙組比甲組多,高分段乙組成績比甲組好.其中正確的共有( )
分?jǐn)?shù) | 50 | 60 | 70 | 80 | 90 | 100 | |
人 | 甲組 | 2 | 5 | 10 | 13 | 14 | 6 |
乙組 | 4 | 4 | 16 | 2 | 12 | 12 |
A. 2種 B. 3種 C. 4種 D. 5種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC為銳角,點(diǎn)D為直線BC上一動(dòng)點(diǎn),以AD為直角邊且在AD的右側(cè)作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①當(dāng)點(diǎn)D在線段BC上時(shí),如圖1,線段CE、BD的位置關(guān)系為___________,數(shù)量關(guān)系為___________
②當(dāng)點(diǎn)D在線段BC的延長線上時(shí),如圖2,①中的結(jié)論是否仍然成立,請(qǐng)說明理由.
(2)如圖3,如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng)。探究:當(dāng)∠ACB多少度時(shí),CE⊥BC?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小方家住戶型呈長方形,平面圖如下(單位:米),現(xiàn)準(zhǔn)備鋪設(shè)地面,三間臥室鋪設(shè)木地板,其它區(qū)城鋪設(shè)地磚.
(1)求a的值.
(2)鋪設(shè)地面需要木地板和地磚各多少平方米(用含的代數(shù)式表示)?
(3)按市場價(jià)格,木地板單價(jià)為300元/平方米,地磚單價(jià)為100元/平方米,裝修公司有兩種活動(dòng)方案,如表:
活動(dòng)方案 | 木地板價(jià)格 | 地磚價(jià)格 | 總安裝費(fèi) |
A | 8折 | 8.5折 | 2000元 |
B | 9折 | 8.5折 | 免收 |
已知臥室2的面積是21平方米,則小方家應(yīng)選擇哪種活動(dòng),使鋪設(shè)地面的總費(fèi)用(包括材料費(fèi)及安裝費(fèi))更低?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx-5(a≠0)經(jīng)過點(diǎn)A(4,-5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)連接AB、BC、CD、DA,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD 中,AE,DF 分別是∠BAD,∠ADC 的平分線,且 AE⊥DF 于點(diǎn) O . 延長 DF 交 AB 的延長線于點(diǎn) M .
(1)求證:AB∥DC ;
(2)若∠MBC=120°,∠BAD=108°,求∠C,∠DFE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( 。
A. 袋中裝有大小和質(zhì)地都相同的3個(gè)紅球和2個(gè)黃球,從中隨機(jī)取一個(gè),取到紅球
B. 擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點(diǎn)數(shù)是偶數(shù)
C. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面
D. 先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點(diǎn)數(shù)之和是7或超過9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程x2+(2k+1)x+k2+2=0有兩個(gè)實(shí)數(shù)根x1,x2.
(1)求實(shí)數(shù)k的取值范圍;
(2)若x1,x2滿足|x1|+|x2|=|x1x2|-1,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com