精英家教網 > 初中數學 > 題目詳情
當b≠0時,比較1+b與1的大小。
解:∵b≠0時,
∴b>0或b<0,
當b>0時,1+b>1,
當b<0時,1+b<1。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(1)先化簡,再求值:(
3a
a+1
-
a2-1
a+1
)•
a2-1
a
,其中a=
7
+1(精確到0.01);
(2)當b≠0時,比較
b+1
與1的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線y=
1
2
x2-4x+2m(m+x)與x軸有兩個交點(x1,0),(x2,0),若y1=x1+x2-
1
2
x1x2
,
y2=-m2+6m-4
(1)當m≥0時,求y1的取值范圍;
(2)當m≤-1時,比較y1與y2的大小,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•聊城一模)在一平直河岸l同側有A,B兩個村莊,A,B到l的距離分別是3km和2km,AB=akm(a>1).現計劃在河岸l上建一抽水站P,用輸水管向兩個村莊供水.
某班數學興趣小組設計了兩種鋪設管道方案:圖1是方案一的示意圖,設該方案中管道長度為d1,且d1=PB+BA(km)(其中BP⊥l于點P);圖2是方案二的示意圖,設該方案中管道長度為d2,且d2=PA+PB(km)(其中點A′與點A關于l對稱,A′B與l交于點P).

觀察計算:(1)在方案一中,d1=
a+2
a+2
km(用含a的式子表示);
(2)在方案二中,組長小宇為了計算d2的長,作了如圖3所示的輔助線,請你按小宇同學的思路計算,d2=
a2+24
a2+24
km(用含a的式子表示).
探索歸納:(1)①當a=4時,比較大小:d1
d2(填“>”、“=”或“<”);
②當a=6時,比較大。篸1
d2(填“>”、“=”或“<”);
(2)請你參考方法指導,就a(當a>1時)的所有取值情況進行分析,要使鋪設的管道長度較短,應選擇方案一還是方案二?
方法指導:當不易直接比較兩個正數m與n的大小時,可以對它們的平方進行比較:
∵m2-n2=(m+n)(m-n),m+n>0,
∴(m2-n2)與(m-n)的符號相同.
當m2-n2>0時,m-n>0,即m>n;
當m2-n2=0時,m-n=0,即m=n;
當m2-n2<0時,m-n<0,即m<n.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2010•邢臺一模)如圖所示,一圓柱高AB為5cm,BC是底面直徑,設底面半徑長度為acm,求點P從A點出發(fā)沿圓柱表面移動到點C的最短路線.

方案設計
某班數學興趣小組設計了兩種方案:
圖1是方案一的示意圖,該方案中的移動路線的長度為l1,則l1=5+2a(cm);
圖2是方案二的示意圖,設l2是把圓柱沿AB側面展開的線段AC的長度,則l2=
25+π2a2
25+π2a2
cm(保留π).
計算探究

①當a=3時,比較大。簂1
 l2(填“>”“=”或“<”);
②當a=4時,比較大小:l1
 l2(填“>”“=”或“<”);
延伸拓展
在一般情況下,設圓柱的底面半徑為rcm.高為hcm.
①若l12=l22,求h與r之間的關系;
②假定r取定值,那么h取何值時,l1<l2
③假定r取定值,那么h取何值時,l1>l2?

查看答案和解析>>

科目:初中數學 來源: 題型:

已知A=
1
x+1
,B=
x-1
x2+2x+1
,求A與B的差;當x≠-1時,比較A與B的大。

查看答案和解析>>

同步練習冊答案