【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小明在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度 ,AB=10米,AE=15米.

(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):

【答案】
(1)解:過(guò)B作BG⊥DE于G,

Rt△ABF中,i=tan∠BAH=

∴∠BAH=30°,∴BH= AB=5;


(2)解:由(1)得:BH=5,AH=5 ,∴BG=AH+AE=5 +15,

Rt△BGC中,∠CBG=45°,∴CG=BG=5 +15.

Rt△ADE中,∠DAE=60°,AE=15,∴DE= AE=15

∴CD=CG+GE﹣DE=5 +15+5﹣15 =20﹣10 ≈2.7m.

答:宣傳牌CD高約2.7米.


【解析】(1)在Rt△ABH中,根據(jù)AB的坡度求出∠BAH的度數(shù),就可求出BH的長(zhǎng)。
(2)在△ADE利用解直角三角形求出DE的長(zhǎng),進(jìn)而可求出EH,即BG的長(zhǎng),然后在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長(zhǎng)然后根據(jù)CD=CG+GE-DE即可求出宣傳牌的高度。
【考點(diǎn)精析】利用解直角三角形和關(guān)于坡度坡角問(wèn)題對(duì)題目進(jìn)行判斷即可得到答案,需要熟知解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法);坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Ba,b)是第一象限內(nèi)一點(diǎn),且a、b滿(mǎn)足等式a2-6a+9+|b-1|=0

1)求點(diǎn)B的坐標(biāo);

2)如圖,動(dòng)點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度從O點(diǎn)出發(fā),沿x軸的正半軸方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)A以每秒2個(gè)單位長(zhǎng)度的速度從O點(diǎn)出發(fā),沿y軸的正半軸方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),ABCAB為斜邊的等腰直角三角形;

3)如圖,在(2)的條件下,作∠ABC的平分線(xiàn)BD,設(shè)BD的長(zhǎng)為m,ADB的面積為S.請(qǐng)用含m的式子表示S

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,半徑為1的⊙A的圓心與坐標(biāo)原點(diǎn)O重合,線(xiàn)段BC的端點(diǎn)分別在x軸與y軸上,點(diǎn)B的坐標(biāo)為(6,0),且sin∠OCB=

(1)若點(diǎn)Q是線(xiàn)段BC上一點(diǎn),且點(diǎn)Q的橫坐標(biāo)為m.
①求點(diǎn)Q的縱坐標(biāo);(用含m的代數(shù)式表示)
②若點(diǎn)P是⊙A上一動(dòng)點(diǎn),求PQ的最小值;
(2)若點(diǎn)A從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度沿折線(xiàn)OBC運(yùn)動(dòng),到點(diǎn)C運(yùn)動(dòng)停止,⊙A隨著點(diǎn)A的運(yùn)動(dòng)而移動(dòng).
①點(diǎn)A從O→B的運(yùn)動(dòng)的過(guò)程中,若⊙A與直線(xiàn)BC相切,求t的值;
②在⊙A整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)⊙A與線(xiàn)段BC有兩個(gè)公共點(diǎn)時(shí),直接寫(xiě)出t滿(mǎn)足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:?jiǎn)栴}:某班在購(gòu)買(mǎi)啦啦操比賽的物資時(shí),準(zhǔn)備購(gòu)買(mǎi)紅色、黃色,藍(lán)色三種顏色的啦啦球,其顏色不同則價(jià)格不同,第一次買(mǎi)了15個(gè)紅色啦啦球、7個(gè)黃色啦啦球、11個(gè)藍(lán)色啦啦球共用1084元,第二次買(mǎi)了2個(gè)紅色啦啦球、4個(gè)黃色啦啦球、3個(gè)藍(lán)色啦啦球共用304元,試問(wèn)第三次買(mǎi)了紅、黃、藍(lán)啦啦球各一個(gè)共需多少元?(假定三次購(gòu)買(mǎi)紅、黃、藍(lán)啦啦球單價(jià)不變)

解:設(shè)購(gòu)買(mǎi)紅、黃、藍(lán)啦啦球的單價(jià)分別為x、y、z元,依題意得:

上述方程組可變形為:

設(shè)x+y+zm2x+zn,上述方程組又可化為:

①+4×②得:m   ,即x+y+z   ;

答:第三次購(gòu)買(mǎi)紅、黃、藍(lán)啦啦球各一個(gè)共需   元.

閱讀后,細(xì)心的你,可以解決下列問(wèn)題:

某同學(xué)買(mǎi)13支黑筆、5支紅筆、9個(gè)筆記本,共用去92.5元:如果買(mǎi)2支黑筆、4支紅筆、3個(gè)筆記本,則共用去32元,試問(wèn)只買(mǎi)一支黑筆、一支紅筆、一個(gè)筆記本,共需多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC是等邊三角形,點(diǎn)D、E分別在AC、BC上,且CD=BE,

(1)求證:ABE≌△BCD;

(2)求出AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)有一點(diǎn)D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,則∠BDC的度數(shù)為( )

A. 100° B. 80° C. 70° D. 50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.

(1)D是BC的中點(diǎn);
(2)△BEC∽△ADC;
(3)若 ,求⊙O的半徑。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線(xiàn),A、B為切點(diǎn),過(guò)圓上一點(diǎn)C作⊙O的切線(xiàn)CF,分別交AD、BE于點(diǎn)M、N,連接AC、CB,若∠ABC=30°,則AM=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】⊙O的半徑為5,弦BC=8,點(diǎn)A是⊙O上一點(diǎn),且AB=AC,直線(xiàn)AO與BC交于點(diǎn)D,則AD的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案