【題目】設(shè)實(shí)數(shù)a,b,c滿足a>b>c(ac<0),且|c|<|b|<|a|,則|x-a|+|x+b|+|x-c|的最小值為(

A. B. |b| C. a+b D. -c-a

【答案】C

【解析】

根據(jù)ac<0可知,a,c異號,再根據(jù)a>b>c,以及|c|<|b|<|a|,即可確定a,-b, c在數(shù)軸上的位置,而|x-a|+|x+b|+|x-c|表示數(shù)軸上的點(diǎn)到a,-b,c三點(diǎn)的距離的和,根據(jù)數(shù)軸即可確定.

ac<0,

a,c異號,

a<0,c>0

又∵a>b>c,以及|c|<|b|<|a|,

a>b>0>c>-b,

又∵|x-a|+|x+b|+|x-c|表示到a,-b,c三點(diǎn)的距離的和,

當(dāng)x在表示c點(diǎn)的數(shù)的位置時(shí)距離最小,

|x-a|+|x+b|+|x-c|最小,最小值是a-b之間的距離,即a+b.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平行四邊形ABCD中,AM=CN.求證:四邊形MBND是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BAC=90°,BE平分∠ABC,AM⊥BC于點(diǎn)M,交BE于點(diǎn)G,AD平分MAC,交BC于點(diǎn)D,交BE于點(diǎn)F.

(1)判斷直線BE與線段AD之間的關(guān)系,并說明理由;

(2)若C=30°,圖中是否存在等邊三角形?若存在,請寫出來并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l上有一點(diǎn)O,點(diǎn)A,B同時(shí)從O出發(fā),在直線l上分別向左,向右作勻速運(yùn)動(dòng),且A,B的速度之比是1:2,設(shè)運(yùn)動(dòng)時(shí)間為ts,

(1)當(dāng)t=2s時(shí),AB=24cm,此時(shí),

①在直線l上畫出A,B兩點(diǎn)運(yùn)動(dòng)2s時(shí)的位置,并回答點(diǎn)A運(yùn)動(dòng)的速度是   cm/s,點(diǎn)B的運(yùn)動(dòng)速度是   cm/s;

②若點(diǎn)P為直線l上一點(diǎn),且PA=OP+PB,求 的值;

(2)在(1)的條件下,若A,B同時(shí)按原速度向左運(yùn)動(dòng),再經(jīng)過幾秒,OA=3OB?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連接對角線互相垂直的四邊形的各邊中點(diǎn),所得圖形一定是(

A. 正方形 B. 菱形 C. 矩形 D. 梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。

1)求證:OE=OF;

2)若BC=,求AB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為(1,2),(-2,3),(-1,0),把它們的橫坐標(biāo)和縱坐標(biāo)都擴(kuò)大到原來的2倍,得到點(diǎn) , .下列說法正確的是( 。
A.△ 與△ABC是位似圖形,位似中心是點(diǎn)(1,0)
B.△ 與△ABC是位似圖形,位似中心是點(diǎn)(0,0)
C.△ 與△ABC是相似圖形,但不是位似圖形
D.△ 與△ABC不是相似圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2).

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)在y軸的負(fù)半軸上是否存在點(diǎn)M,使ABM是以AB為直角邊的直角角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEBCEFAB , 且SADE=4,SEFC=9,則△ABC的面積為。

查看答案和解析>>

同步練習(xí)冊答案