【題目】(模型建立)
(1)如圖1,等腰直角三角形中,,,直線經(jīng)過點,過作于點,過作于點.求證:;
(模型應用)
(2)已知直線:與坐標軸交于點、,將直線繞點逆時針旋轉(zhuǎn)至直線,如圖2,求直線的函數(shù)表達式;
(3)如圖3,長方形,為坐標原點,點的坐標為,點、分別在坐標軸上,點是線段上的動點,點是直線上的動點且在第四象限.若是以點為直角頂點的等腰直角三角形,請直接寫出點的坐標.
【答案】(1)見解析;(2)y=7x21;(3)D(4,2)或(,).
【解析】
(1)根據(jù)△ABC為等腰直角三角形,AD⊥ED,BE⊥ED,可判定;
(2)①過點B作BC⊥AB,交l2于C,過C作CD⊥y軸于D,根據(jù)△CBD≌△BAO,得出BD=AO=3,CD=OB=4,求得C(4,7),最后運用待定系數(shù)法求直線l2的函數(shù)表達式;
(3)根據(jù)△APD是以點D為直角頂點的等腰直角三角形,當點D是直線y=2x+6上的動點且在第四象限時,分兩種情況:當點D在矩形AOCB的內(nèi)部時,當點D在矩形AOCB的外部時,設D(x,2x+6),分別根據(jù)△ADE≌△DPF,得出AE=DF,據(jù)此列出方程進行求解即可.
解:(1)證明:∵△ABC為等腰直角三角形,
∴CB=CA,∠ACD+∠BCE=90°,
又∵AD⊥ED,BE⊥ED,
∴∠D=∠E=90°,∠EBC+∠BCE=90°,
∴∠ACD=∠EBC,
在△ACD與△CBE中,,
∴(AAS);
(2)①如圖2,過點B作BC⊥AB,交l2于C,過C作CD⊥y軸于D,
∵∠BAC=45°,
∴△ABC為等腰直角三角形,
由(1)可知:△CBD≌△BAO,
∴BD=AO,CD=OB,
∵直線l1:y=x+4中,若y=0,則x=3;若x=0,則y=4,
∴A(3,0),B(0,4),
∴BD=AO=3,CD=OB=4,
∴OD=4+3=7,
∴C(4,7),
設l2的解析式為y=kx+b,則,
解得:,
∴l2的解析式為:y=7x21;
(3)D(4,2)或(,).
理由:當點D是直線y=2x+6上的動點且在第四象限時,分兩種情況:
當點D在矩形AOCB的內(nèi)部時,如圖,過D作x軸的平行線EF,交直線OA于E,交BC于F,
設D(x,2x+6),則OE=2x6,AE=6(2x6)=122x,DF=EFDE=8x,
由(1)可得,△ADE≌△DPF,則DF=AE,即:122x=8x,
解得x=4,
∴2x+6=2,
∴D(4,2),
此時,PF=ED=4,CP=6=CB,符合題意;
當點D在矩形AOCB的外部時,如圖,過D作x軸的平行線EF,交直線OA于E,交直線BC于F,
設D(x,2x+6),則OE=2x6,AE=OEOA=2x66=2x12,DF=EFDE=8x,
同理可得:△ADE≌△DPF,則AE=DF,即:2x12=8x,
解得x=,
∴2x+6=,
∴D(,),
此時,ED=PF=,AE=BF=,BP=PFBF=<6,符合題意,
綜上所述,D點坐標為:(4,2)或(,)
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為12米,并測出此時太陽光線與地面成30°夾角.
(1)求出樹高AB;
(2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,網(wǎng)格中每個小正方形邊長為1,△ABC的頂點都在格點上.將△ABC向左平移2格,再向上平移3格,得到△A′B′C′.
(1)請在圖中畫出平移后的△A′B′C′;
(2)畫出平移后的△A′B′C′的中線B′D′
(3)若連接BB′,CC′,則這兩條線段的關系是________
(4)△ABC在整個平移過程中線段AB 掃過的面積為________
(5)若△ABC與△ABE面積相等,則圖中滿足條件且異于點C的格點E共有______個
(注:格點指網(wǎng)格線的交點)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年1月10日,綠色和平發(fā)布了全國74個城市PM2.5濃度年均值排名和相應的最大日均值,其中浙江省六個地區(qū)的濃度如下圖所示(舟山的最大日均值條形圖缺損)以下說法中錯誤的是______.
①則六個地區(qū)中,最大日均值最高的是紹興;②杭州的年均值大約是舟山的2倍;③舟山的最大日均值不一定低于麗水的最大日均值;④六個地區(qū)中,低于國家環(huán)境空氣質(zhì)量標準規(guī)定的年均值35微克每立方米的地區(qū)只有舟山.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,已知,,
(1)畫的垂直平分線交、于點、(保留作圖痕跡,作圖痕跡請加黑描重);
(2)求的度數(shù);
(3)若,求的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了探索三角形的內(nèi)切圓半徑r與三角形的周長C、面積S之間的關系,在數(shù)學實驗活動中,選取等邊三角形圖甲和直角三角形圖乙進行研究.已知⊙O是△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn).
(1)用刻度尺分別量出表中未量度的△ABC的長,填入空格處,并計算出周長C和面積S(結(jié)果精確到0.1);
(2)觀察圖形,利用上表實驗數(shù)據(jù)分析、猜測特殊三角形的r與C,S之間的關系,判斷這種關系對任意三角形(圖丙)是否也成立,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖4,已知AB為半圓O的直徑,BC⊥AB于點B,且BC=AB,D為半圓上一點,連結(jié)BD并延長交半圓O的切線AE于點E.
圖4① 圖4②
(1)如圖①,若CD=CB,求證:CD為半圓O的切線;
(2)如圖②,若點F在OB上,且FD⊥CD,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com