【題目】已知:如圖1,線段AB、CD相交于點O,連接AD、CB,如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N,試解答下列問題:
(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:_____________________;
(2)在圖2中,若∠D=40°,∠B=30°,試求∠P的度數(shù)(寫出解答過程);
(3)如果圖2中,∠D和∠B為任意角,其他條件不變,試寫出∠P與∠D、∠B之間的數(shù)量關(guān)系(直接寫出結(jié)論即可).
【答案】(1)∠A+∠D=∠B+∠C;(2)35°;(3)2∠P=∠B+∠D
【解析】
(1)根據(jù)三角形的內(nèi)角和等于180°,易得∠A+∠D=∠B+∠C;
(2)仔細(xì)觀察圖2,得到兩個關(guān)系式∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,再由角平分線的性質(zhì)得∠1=∠2,∠3=∠4,兩式相減,即可得結(jié)論.
(3)參照(2)的解題思路.
解:(1)∠A+∠D=∠B+∠C;
(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,
∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,
又∵AP、CP分別平分∠DAB和∠BCD,
∴∠1=∠2,∠3=∠4,
∴∠P-∠D=∠B-∠P,
即2∠P=∠B+∠D,
∴∠P=(40°+30°)÷2=35°.
(3)由(2)的解題步驟可知,∠P與∠D、∠B之間的數(shù)量關(guān)系為:2∠P=∠B+∠D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)與的圖像在第一象限交于點A(m,y1),點B(m+1,y2)在的圖像上,且點B在以O 點為圓心,OA為半徑的⊙O上,則k的值為( ).
A. B. 1 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC 的三個頂點的坐標(biāo)分別 A(-3,4)B(-5,2)C(-2,1)
(1)畫出 △ABC關(guān)于y 軸的對稱圖形 △A1B1C1;
(2)畫出將△ABC 繞原點 O逆時針方向旋轉(zhuǎn)90°得到的△A2B2C2 ;
(3)求(2)中線段 OA掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM、ON上滑動,下列結(jié)論:
①若C、O兩點關(guān)于AB對稱,則OA=2;
②C、O兩點距離的最大值為4;
③若AB平分CO,則AB⊥CO;
④斜邊AB的中點D運動路徑的長為;
其中正確的是_____(把你認(rèn)為正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為等腰直角三角形,,點D在AB邊上(不與點A、B重合),以CD為腰作等腰直角,.
(1)如圖1,作于F,求證:;
(2)在圖1中,連接AE交BC于M,求的值。
(3)如圖2,過點E作交CB的延長線于點H,過點D作,交AC于點G,連接GH當(dāng)點D在邊AB上運動時,式子的值會發(fā)生變化嗎?若不變,求出該值:若變化請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某石化乙烯廠某車間生產(chǎn)甲、乙兩種塑料的相關(guān)信息如下表,請你解答下列問題:
出廠價 | 成本價 | 排污處理費 | |
甲種塑料 | 2100(元/噸) | 800(元/噸) | 200(元/噸) |
乙種塑料 | 2400(元/噸) | 1100(元/噸) | 100(元/噸) 另每月還需支付設(shè)備管理、維護(hù)費20000元 |
(1)設(shè)該車間每月生產(chǎn)甲、乙兩種塑料各x噸,利潤分別為y1元和y2元,分別求出y1和y2與x的函數(shù)關(guān)系式(注:利潤=總收入-總支出);
(2)已知該車間每月生產(chǎn)甲、乙兩種塑料均不超過400噸,若某月要生產(chǎn)甲、乙兩種塑料共700噸,求該月生產(chǎn)甲、乙塑料各多少噸時,獲得的總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com