【題目】函數(shù)yy在第一象限內(nèi)的圖象如圖,點(diǎn)Py的圖象上一動(dòng)點(diǎn),PCx軸于點(diǎn)C,交y的圖象于點(diǎn)B.給出如下結(jié)論:①△ODBOCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積大小不會(huì)發(fā)生變化;④CAAP.其中所有正確結(jié)論的序號(hào)是( 。

A. ①②③ B. ②③④ C. ①③④ D. ①②④

【答案】C

【解析】解:AB是反比函數(shù)上的點(diǎn),SOBD=SOAC=,故正確;

當(dāng)P的橫縱坐標(biāo)相等時(shí)PA=PB,故錯(cuò)誤;

P的圖象上一動(dòng)點(diǎn),S矩形PDOC=4,S四邊形PAOB=S矩形PDOCSODB﹣﹣SOAC=4=3,故正確;

連接OP =4,AC=PC,PA=PC=3,AC=AP;故正確;

綜上所述,正確的結(jié)論有①③④故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,線段AE的延長線交△ABC的外接圓于點(diǎn)D.

(1)求證:ED=BD;

(2)若∠BAC=90°,△ABC的外接圓的直徑是6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=2x2-4x-6x軸交于點(diǎn)AB,與y軸交于點(diǎn)C.有下列說法:①拋物線的對(duì)稱軸是x=1;A、B兩點(diǎn)之間的距離是4;③△ABC的面積是24;④當(dāng)x<0時(shí),yx的增大而減。渲校f法正確的是_________________.(只需填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù),下列說法錯(cuò)誤的是( )

A. 當(dāng)時(shí),的增大而減小

B. 若圖象與軸有交點(diǎn),則

C. 當(dāng)時(shí),不等式的解集是

D. 若將圖象向上平移個(gè)單位,再向左平移個(gè)單位后過點(diǎn),則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜的銷售單價(jià)y1與銷售月份x之間的關(guān)系如圖1所示,成本y2與銷售月份x之間的關(guān)系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)

(1)已知6月份這種蔬菜的成本最低,此時(shí)出售每千克的收益是多少元?(收益=售價(jià)﹣成本)

(2)哪個(gè)月出售這種蔬菜,每千克的收益最大?簡單說明理由.

(3)已知市場(chǎng)部銷售該種蔬菜4、5兩個(gè)月的總收益為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克,求4、5兩個(gè)月的銷售量分別是多少萬千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)測(cè)量彈跳力的體育器材,如圖所示,豎桿AC、BD的長度分別為200厘米、300厘米,CD=300厘米.現(xiàn)有一人站在斜桿AB下方的點(diǎn)E處,直立、單手上舉時(shí)中指指尖(點(diǎn)F)到地面的高度為EF,屈膝盡力跳起時(shí),中指指尖剛好觸到斜桿AB上的點(diǎn)G處,此時(shí),就將EGEF的差值y(厘米)作為此人此次的彈跳成績.

(1)設(shè)CEx(厘米),EFa(厘米),求出由xa表示y的計(jì)算公式;

(2)現(xiàn)有一男生,站在某一位置盡力跳起時(shí),剛好觸到斜桿.已知該同學(xué)彈跳時(shí)站的位置為x=150厘米,且a=205厘米.若規(guī)定y≥50,彈跳成績?yōu)閮?yōu);40≤y<50時(shí),彈跳成績?yōu)榱迹?/span>30≤y<40時(shí),彈跳成績?yōu)榧案,那么該生彈跳成績處于什么水平?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)DE分別在BCAC上,且BDCEADBE相交于點(diǎn)F,

(1)證明:△ABD≌△BCE;

(2)證明:△ABE∽△FAE;

(3)AF7,DF1,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABG中,AB=AC=1,∠A=45°,邊長為1的正方形的一個(gè)頂點(diǎn)D在邊AG上,與△ADC另兩邊分別交于點(diǎn)E、F,DE∥AB,將正方形平移,使點(diǎn)D保持在AC上(D不與A重含),設(shè)AF=x,正方形與△ABC重疊部分的面積為y.

(1)求y與x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

(2)x為何值時(shí)y的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABCABC是以坐標(biāo)原點(diǎn)O為位似中心的位似圖形,且點(diǎn)B(3,1),B′(6,2).

(1)請(qǐng)你根據(jù)位似的特征并結(jié)合點(diǎn)B的坐標(biāo)變化回答下列問題:

若點(diǎn)A(,3),A的坐標(biāo)為______;

②△ABCABC的相似比為______;

(2)ABC的面積為m,ABC的面積.(用含m的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案