【題目】已知:正方形ABCD的邊長(zhǎng)為8,點(diǎn)E、F分別在ADCD上,AEDF2BEAF相交于點(diǎn)G,點(diǎn)HBF的中點(diǎn),連接GH,則GH的長(zhǎng)為_____

【答案】5

【解析】

根據(jù)正方形的四條邊都相等可得AB=AD,每一個(gè)角都是直角可得∠BAE=D=90°;然后利用邊角邊證明ABE≌△DAF得∠ABE=DAF,進(jìn)一步得∠AGE=BGF=90°,從而知GH=BF,利用勾股定理求出BF的長(zhǎng)即可得出答案.

∵四邊形ABCD為正方形,
∴∠BAE=D=90°,AB=AD,
ABEDAF中,∵AB=AD,∠BAE=D,AE=DF
∴△ABE≌△DAFSAS),
∴∠ABE=DAF
∵∠ABE+BEA=90°,
∴∠DAF+BEA=90°,
∴∠AGE=BGF=90°
∵點(diǎn)HBF的中點(diǎn),
GH=BF,
BC=8,CF=CD-DF=8-2=6,
BF==10
GH=BF=5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過(guò)市場(chǎng)銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).
(1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某日,正在我國(guó)南海海域作業(yè)的一艘大型漁船突然發(fā)生險(xiǎn)情,相關(guān)部門(mén)接到求救信號(hào)后,立即調(diào)遣一架直升飛機(jī)和一艘剛在南海巡航的漁政船前往救援,傷員在C處,直升機(jī)在A處,傷員離云梯(AP)150米(即CP的長(zhǎng)).傷員從C地前往云梯的同時(shí),直升機(jī)受到慣性的影響又往前水平行進(jìn)50米到達(dá)B處,此時(shí)云梯也移動(dòng)到BQ位置,已知∠ACP=30°,∠APQ=60°,∠BQI=43°.問(wèn):傷員需前行多少米才能夠到云梯?(結(jié)果保留整數(shù),sin43°=0.68,cos43°=0.73,tan43°=0.93, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,AB分別為直線、上兩點(diǎn),且,若射線繞點(diǎn)順時(shí)針旋轉(zhuǎn)至后立即回轉(zhuǎn),射線繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)至后立即回轉(zhuǎn),兩射線分別繞點(diǎn)A、點(diǎn)B不停地旋轉(zhuǎn),若射線轉(zhuǎn)動(dòng)的速度是/秒,射線轉(zhuǎn)動(dòng)的速度是/秒,且a、b滿足.若射線繞點(diǎn)A順時(shí)針先轉(zhuǎn)動(dòng)18秒,射線才開(kāi)始繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),在射線到達(dá)之前,問(wèn)射線再轉(zhuǎn)動(dòng)_______秒時(shí),射線與射線互相平行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了貫徹落實(shí)健康第一的指導(dǎo)思想,促進(jìn)學(xué)生全面發(fā)展,國(guó)家每年都要對(duì)中學(xué)生進(jìn)行一次體能測(cè)試,測(cè)試結(jié)果分“優(yōu)秀”、“良好”、“及格”、“不及格”四個(gè)等級(jí),某學(xué)校從七年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生的體能測(cè)試結(jié)果進(jìn)行分析,并根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)這兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題

(1)本次抽樣調(diào)查共抽取多少名學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)在扇形統(tǒng)計(jì)圖中,求測(cè)試結(jié)果為“良好”等級(jí)所對(duì)應(yīng)圓心角的度數(shù).
(4)若該學(xué)校七年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)該學(xué)校七年級(jí)學(xué)生中測(cè)試結(jié)果為“不及格”等級(jí)的學(xué)生有多少名?
(5)請(qǐng)你對(duì)“不及格”等級(jí)的同學(xué)提一個(gè)友善的建議(一句話即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P為圓上一點(diǎn),點(diǎn)C為AB延長(zhǎng)線上一點(diǎn),PA=PC,∠C=30°.

(1)求證:CP是⊙O的切線.
(2)若⊙O的直徑為8,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:如圖,在正方形中,點(diǎn),分別為邊,上的動(dòng)點(diǎn),且

1)如果將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn).請(qǐng)你畫(huà)出圖形(旋轉(zhuǎn)后的輔助線).你能夠得出關(guān)于,的一個(gè)結(jié)論是________

2)如果點(diǎn)分別運(yùn)動(dòng)到,的延長(zhǎng)線上,如圖,請(qǐng)你能夠得出關(guān)于,,的一個(gè)結(jié)論是________

3)變式:如圖,將題目改為“在四邊形中,,且,點(diǎn)分別為邊,上的動(dòng)點(diǎn),且”,請(qǐng)你猜想關(guān)于,,有什么關(guān)系?并驗(yàn)證你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)快速發(fā)展,環(huán)境問(wèn)題越來(lái)越受到人們的關(guān)注校為了了解節(jié)能減排、垃圾分類等知 識(shí)的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類, 并將結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

1)本次調(diào)查的學(xué)生共有 人;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)“非常了解”的人中有,兩名男生,,兩名女生,若從中隨機(jī)抽取兩人去參加環(huán)保 知識(shí)競(jìng)賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到名男生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案