【題目】甲、乙、丙、丁四位選手各10次射擊的平均成績都是9.2環(huán),其中甲的成績的方差為0.015, 乙的成績的方差為0.035,丙的成績的方差為0.025,丁的成績的方差為0.027,由此可知
(A)甲的成績最穩(wěn)定 (B)乙的成績最穩(wěn)定
(C)丙的成績最穩(wěn)定 (D)丁的成績最穩(wěn)定
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的直角坐標系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標是(﹣3,﹣1).
(1)將△ABC沿y軸正方向平移3個單位得到△A1B1C1 , 畫出△A1B1C1 , 并寫出點B1坐標;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2 , 并寫出點C2的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=6cm,DE=4cm,求BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P(m+3,m-1)在x軸上,則點P的坐標為( )
A. (0,-2) B. (2,0) C. (4,0) D. (0,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①直徑是弦;②垂直于半徑的直線是這個圓的切線;③圓只有一個外切三角形;④三點確定一個圓,其中假命題的個數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)ω是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與ω的面積相等(簡稱等積),那么這樣的等積轉(zhuǎn)化稱為ω的“化方”.
(1)閱讀填空
如圖①,已知矩形ABCD,延長AD到E,使DE=DC,以AE為直徑作半圓.延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.
理由:連接AH,EH.
∵AE為直徑,∴∠AHE=90°,∴∠HAE+∠HEA=90°.
∵DH⊥AE,∴∠ADH=∠EDH=90°
∴∠HAD+∠AHD=90°
∴∠AHD=∠HED,∴△ADH∽ .
∴,即DH2=AD×DE.
又∵DE=DC
∴DH2= ,即正方形DFGH與矩形ABCD等積.
(2)操作實踐
平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.
如圖②,請用尺規(guī)作圖作出與ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).
(3)解決問題三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的 (填寫圖形名稱),再轉(zhuǎn)化為等積的正方形.
如圖③,△ABC的頂點在正方形網(wǎng)格的格點上,請作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算△ABC面積作圖).
(4)拓展探究
n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n﹣1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.
如圖④,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補的角是;
(2)若∠AOD=36°,求∠DOE的度數(shù);
(3)當∠AOD=x°時,請直接寫出∠DOE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com