分析 (1)根據(jù)等邊三角形的性質(zhì),通過全等三角形的判定定理SAS證得結(jié)論;
(2)利用(1)中的全等三角形的對(duì)應(yīng)角相等和三角形外角的性質(zhì)求得∠BPQ=60°;
(3)利用(2)的結(jié)果求得∠PBQ=30°,所以由“30度角所對(duì)的直角邊是斜邊的一半”得到2PQ=BP
解答 (1)證明:∵△ABC為等邊三角形,
∴AB=CA,∠BAE=∠C=60°,
∴在△AEB與△CDA中,$\left\{\begin{array}{l}{AB=CA}\\{∠BAE=∠C}\\{AE=CD}\end{array}\right.$,
∴△AEB≌△CDA(SAS);
(2)解:由(1)知,△AEB≌△CDA,
∴∠ABE=∠CAD,
∴∠BAD+∠ABD=∠BAD+∠CAD=∠BAC=60°,
∴∠BPQ=∠BAD+∠ABD=60°;
∵BQ⊥AD,
∴∠PBQ=90°-∠BPQ=30°,
(3)解:如圖,由(2)知,∠PBQ=30°,
∴PQ=$\frac{1}{2}$BP,
∴BP=2PQ.
點(diǎn)評(píng) 此題是全等三角形的判定與性質(zhì),主要考查了等邊三角形的性質(zhì),含30度角的直角三角形.全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時(shí),關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件,此題是一道比較典型的題目,需記住這種題型的解決方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com