分析 (1)連接AD,根據(jù)圓周角定理得到AD⊥BC,根據(jù)等腰三角形的性質(zhì)得到CD=BD,根據(jù)弦、弧、圓心角的關(guān)系定理證明結(jié)論;
(2)連接OD交BE于H,作OF⊥BD于F,根據(jù)勾股定理求出AD,根據(jù)三角形中位線定理求出OF,根據(jù)三角形的面積公式求出BH,根據(jù)垂徑定理解答.
解答 (1)證明:連接AD,
∵AB為⊙O的直徑,
∴AD⊥BC,
∵AB=AC,
∴CD=BD,
∵A、E、D、B四點(diǎn)共圓,
∴∠CED=∠ABC,
∵AB=AC,
∴∠ACB=∠ABC,
∴∠ACB=∠CED,
∴DE=DC,
∴DE=BD,
∴$\widehat{DE}$=$\widehat{BD}$;
(2)解:連接OD交BE于H,作OF⊥BD于F,
BD=$\frac{1}{2}$BC=3,AB=5,
又勾股定理得,AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=4,
∵AD⊥BC,OF⊥BD,
∴OF∥AD,又OA=OB,
∴OF=$\frac{1}{2}$AD=2,
則$\frac{1}{2}$×$\frac{5}{2}$×BH=$\frac{1}{2}$×3×2,
解得,BH=$\frac{12}{5}$,
∵$\widehat{DE}$=$\widehat{BD}$,
∴BE=2BH=$\frac{24}{5}$.
點(diǎn)評(píng) 本題考查的是圓周角定理、弦、弧、圓心角的關(guān)系、垂徑定理的應(yīng)用,掌握相關(guān)定理、并靈活運(yùn)用是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com