解:(l)當點P與點C關(guān)于AB對稱時,CP⊥AB,設(shè)垂足為D,
∵AB為⊙O的直徑,
∴∠ACB=90°,(1分)
∵AB=5,BC:CA=4:3,
∴BC=4,AC=3,
∵AC•BC=AB•CD,
∴CD=
=
,
∴PC=2CD=
.
在Rt△ACB和Rt△PCQ中,
∠ACB=∠PCQ=90°,∠CAB=∠CPQ,
∴△ACB∽△PCQ,
∴
=
,
∴CQ=
PC=
;
(2)點P在弧AB上運動時,在Rt△ACB和Rt△PCQ中,
∠ACB=∠PCQ=90°,∠CAB=∠CPQ,
∴△ACB∽△PCQ,
∴
=
,
∴
.
∴當PC取得最大值時,CQ的值最大,
而當PC為圓的直徑時,PC的值最大,最大為5,此時CQ=
.
分析:(1)如果點P與點C關(guān)于AB對稱,根據(jù)垂徑定理可得出CP⊥AB,在直角三角形ABC中,根據(jù)△ABC面積的不同表示方法可求出CD的長;
(2)如果CQ去最大值,那么PC也應(yīng)該取最大值,因此當PC是圓O的直徑時,CQ才取最大值.此時PC為5,可根據(jù)上面得出的PC、CQ的比例關(guān)系求出CQ的長.即可得出PC的值,進而可通過相似三角形△PQC和△ABC(∠A=∠P,一組直角)求出CQ的長.
點評:本題屬于常規(guī)的幾何綜合題,利用了直角三角形的面積公式,相似三角形的判定和性質(zhì),直角三角形的性質(zhì),正切的概念求解.解第2小問時要有動態(tài)的思想(在草稿上畫畫圖)不難猜想出結(jié)論.