【題目】如圖,將平行四邊形ABCD折疊,使頂點(diǎn)D恰好落在AB邊上的點(diǎn)M處,折痕為AN,有以下四個(gè)結(jié)論①MN∥BC;②MN=AM;③四邊形MNCB是矩形;④四邊形MADN是菱形,以上結(jié)論中,你認(rèn)為正確的有_____________(填序號(hào)).
【答案】①②④
【解析】
根據(jù)四邊形ABCD是平行四邊形,可得∠B=∠D,再根據(jù)折疊可得∠D=∠NMA,再利用等量代換可得∠B=∠NMA,然后根據(jù)平行線的判定方法可得MN∥BC;證明四邊形AMND是平行四邊形,再根據(jù)折疊可得AM=DA,進(jìn)而可證出四邊形AMND為菱形,再根據(jù)菱形的性質(zhì)可得MN=AM,不能得出∠B=90°;即可得出結(jié)論.
解:∵四邊形ABCD是平行四邊形,
∴∠B=∠D,
∵根據(jù)折疊可得∠D=∠NMA,
∴∠B=∠NMA,
∴MN∥BC;①正確;
∵四邊形ABCD是平行四邊形,
∴DN∥AM,AD∥BC,
∵MN∥BC,
∴AD∥MN,
∴四邊形AMND是平行四邊形,
根據(jù)折疊可得AM=DA,
∴四邊形AMND為菱形,
∴MN=AM;②④正確;
沒(méi)有條件證出∠B=90°,④錯(cuò)誤;
故答案為:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,P,Q,B在一條不完整的數(shù)軸上,點(diǎn)A表示數(shù)-3,點(diǎn)B表示數(shù)3,若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度向終點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)以每秒2個(gè)單位長(zhǎng)度向終點(diǎn)A勻速運(yùn)動(dòng),其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)BP=3AQ時(shí),點(diǎn)P在數(shù)軸上表示的數(shù)是( )
A.2.4B.-1.8C.0.6D.-0.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷售一種進(jìn)價(jià)為20元/個(gè)的計(jì)算器,其銷售量y(萬(wàn)個(gè))與銷售價(jià)格x(元/個(gè)) 的變化如下表:同時(shí),銷售過(guò)程中的其他開(kāi)支(不含進(jìn)價(jià))總計(jì)40萬(wàn)元.
銷售價(jià)格x(元/個(gè)) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬(wàn)個(gè)) | … | 5 | 4 | 3 | 2 | … |
(1)觀察并分析表中的數(shù)據(jù),用所學(xué)過(guò)的函數(shù)知識(shí),直接寫(xiě)出y與 x的函數(shù)解析式;
(2)求出該公司銷售這種計(jì)算器的凈得利潤(rùn)z(萬(wàn)元)與銷售價(jià)格 x(元/個(gè)) 的函數(shù)解析式,銷售價(jià)格定為多少元時(shí)凈得利潤(rùn)最大,最大值是多少?
(3)該公司要求凈得利潤(rùn)不能低于40萬(wàn)元,請(qǐng)你結(jié)合函數(shù)圖象求出銷售價(jià)格 x(元/個(gè)) 的取值范圍,若還需考慮銷售量盡可能大,銷售價(jià)格應(yīng)定為多少元 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)等腰直角三角形如圖放置,∠B=∠CAD=90°,AB=BC=cm,AC=AD,垂直于CD的直線a從點(diǎn)C出發(fā),以每秒cm的速度沿CD方向勻速平移,與CD交于點(diǎn)E,與折線BAD交于點(diǎn)F;與此同時(shí),點(diǎn)G從點(diǎn)D出發(fā),以每秒1cm的速度沿著DA的方向運(yùn)動(dòng);當(dāng)點(diǎn)G落在直線a上,點(diǎn)G與直線a同時(shí)停止運(yùn)動(dòng);設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)填空:CD=_______cm;
(2)連接EG、FG,設(shè)△EFG的面積為y,求y與t之間的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)t的取值范圍;
(3)是否存在某一時(shí)刻t(0<t<2),作∠ADC的平分線DM交EF于點(diǎn)M,是否存在點(diǎn)M是EF的中點(diǎn)?若存在,求此時(shí)的t值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(觀察發(fā)現(xiàn)):(1)如圖1,四邊形ABCD和四邊形AEFG都是正方形,且點(diǎn)E在邊AB上,連接DE和BG,猜想線段DE與BG的數(shù)量關(guān)系和位置關(guān)系.(只要求寫(xiě)出結(jié)論,不必說(shuō)出理由)
(深入探究):(2)如圖2,將圖1中正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定的角度,其他條件與觀察發(fā)現(xiàn)中的條件相同,觀察發(fā)現(xiàn)中的結(jié)論是否還成立?請(qǐng)根據(jù)圖2加以說(shuō)明.
(拓展應(yīng)用):(3)如圖3,直線l上有兩個(gè)動(dòng)點(diǎn)A、B,直線l外有一點(diǎn)動(dòng)點(diǎn)Q,連接QA,QB,以線段AB為邊在l的另一側(cè)作正方形ABCD,連接QD.隨著動(dòng)點(diǎn)A、B的移動(dòng),線段QD的長(zhǎng)也會(huì)發(fā)生變化,若QA,QB長(zhǎng)分別為3,6保持不變,在變化過(guò)程中,線段QD的長(zhǎng)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF,求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是一個(gè)直角,作射線,再分別作和的平分線,.
(1)如圖①,當(dāng)時(shí),求的度數(shù);
(2)如圖②,當(dāng)射線在內(nèi)繞點(diǎn)旋轉(zhuǎn)時(shí),始終是與的平分線.則的大小是否發(fā)生變化,說(shuō)明理由;
(3)當(dāng)射線在外繞點(diǎn)旋轉(zhuǎn)且為鈍角時(shí),仍始終是與的平分線,直接寫(xiě)出的度數(shù)(不必寫(xiě)過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)要印制商品宣傳材料,甲印刷廠的收費(fèi)標(biāo)準(zhǔn)是:每份材料收1元印制費(fèi),另收1 500元制版費(fèi);乙印刷廠的收費(fèi)標(biāo)準(zhǔn)是:每份材料收2.5元印制費(fèi),不收制版費(fèi).
(1)分別寫(xiě)出兩廠的收費(fèi)y(元)與印制數(shù)量x(份)之間的關(guān)系式;
(2)在同一直角坐標(biāo)系中畫(huà)出它們的圖象;
(3)根據(jù)圖象回答下列問(wèn)題:印制800份宣傳材料時(shí),選擇哪一家印刷廠比較合算?商場(chǎng)計(jì)劃花費(fèi)3 000元用于印刷上述宣傳材料,找哪一家印刷廠印制宣傳材料多一些?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹(shù)狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com