【題目】如圖,△ABC中BD、CD平分∠ABC、∠ACB,過D作直線平行于BC,交AB、AC于E、F,當(dāng)∠A的位置及大小變化時(shí),線段EF和BE+CF的大小關(guān)系( 。
A. B. C. D. 不能確定
【答案】B
【解析】
根據(jù)平行線的性質(zhì)和角平分線的性質(zhì),解出△BED和△CFD是等腰三角形,通過等量代換即可得出結(jié)論.
解:由BD平分∠ABC得,∠EBD=∠ABC,
∵EF∥BC,
∴∠AEF=∠ABC=2∠EBD,∠AEF=∠EBD+∠EDB,
∴∠EBD=∠EDB,
∴△BED是等腰三角形,
∴ED=BE,
同理可得,DF=FC,(△CFD是等腰三角形)
∴EF=ED+EF=BE+FC,
∴EF=BE+CF.
故選B.
本題綜合考查了等腰三角形的性質(zhì)及平行線的性質(zhì);一般是利用等腰(等邊)三角形的性質(zhì)得出相等的邊,進(jìn)而得出結(jié)果.進(jìn)行等量代換是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(2018,0),B(0,2014),以 AB 為斜邊作等腰Rt△ABC,則 C點(diǎn)坐標(biāo)為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有一塊長(zhǎng)方形水稻試驗(yàn)田,試驗(yàn)田的長(zhǎng)、寬(如圖所示,長(zhǎng)度單位:米),試驗(yàn)田分兩部分,一部分為水渠,另一部分為新型水稻種植田(陰影部分).
(1)用含a,b的式子表示新型水稻種植田的面積是多少平方米(結(jié)果化成最簡(jiǎn)形式);
(2)若a=30,b=40,在“農(nóng)民豐收節(jié)”到來之時(shí)水稻成熟,計(jì)劃先由甲型收割機(jī)收割一部分,再由乙型收割機(jī)收割剩余部分,甲型收割機(jī)收割水稻每平方米的費(fèi)用為0.3元,乙型收割機(jī)收割水稻每平方米的費(fèi)用為0.5元,若要收割全部水稻的費(fèi)用不超過5000元,問甲型收割機(jī)最少收割多少平方米的水稻?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校就“遇見路人摔倒后如何處理”的問題,隨機(jī)抽取該校部分學(xué)生進(jìn)行問卷調(diào)查,圖1和圖2是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)該校隨機(jī)抽查了 名學(xué)生.
(2)將圖1補(bǔ)充完整;
(3)在圖2中,求“視情況而定”部分所占的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上一點(diǎn),且AB=10,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒,
(1)寫出數(shù)軸上點(diǎn)B所表示的數(shù) ;
(2)點(diǎn)P所表示的數(shù) ;(用含t的代數(shù)式表示);
(3)M是AP的中點(diǎn),N為PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)的過程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,說明理由;若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90°到△AED處,點(diǎn)B,C分別落在點(diǎn)A,E處(如圖②),易證點(diǎn)C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結(jié)論:AC+BC= CD.
簡(jiǎn)單應(yīng)用:
(1)在圖①中,若AC= ,BC=2 ,則CD= .
(2)如圖③,AB是⊙O的直徑,點(diǎn)C、D在⊙上, = ,若AB=13,BC=12,求CD的長(zhǎng).
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(zhǎng)(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點(diǎn)P為AB的中點(diǎn),若點(diǎn)E滿足AE= AC,CE=CA,點(diǎn)Q為AE的中點(diǎn),則線段PQ與AC的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2 . 已知y與t的函數(shù)關(guān)系圖像如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段).
(1)試根據(jù)圖(2)求0<t≤5時(shí),△BPQ的面積y關(guān)于t的函數(shù)解析式;
(2)求出線段BC、BE、ED的長(zhǎng)度;
(3)當(dāng)t為多少秒時(shí),以B、P、Q為頂點(diǎn)的三角形和△ABE相似;
(4)如圖(3)過E作EF⊥BC于F,△BEF繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)一定角度,如果△BEF中E、F的對(duì)應(yīng)點(diǎn)H、I恰好和射線BE、CD的交點(diǎn)G在一條直線,求此時(shí)C、I兩點(diǎn)之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生成一種節(jié)能產(chǎn)品,投放市場(chǎng)供不應(yīng)求.若該企業(yè)每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價(jià)不低于120萬元.已知這種產(chǎn)品的月產(chǎn)量x(套)與每套的售價(jià)y1(萬元)之間滿足關(guān)系式y(tǒng)1=190﹣2x.月產(chǎn)量x(套)與生成總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.
(1)直接寫出y2(2)與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的取值范圍;
(3)當(dāng)月產(chǎn)量x(套)為多少時(shí),這種產(chǎn)品的利潤(rùn)W(萬元)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解九年級(jí)學(xué)生的體能情況,抽調(diào)了一部分學(xué)生進(jìn)行一分鐘跳繩測(cè)試,將測(cè)試成績(jī)整理后作出如圖所示的統(tǒng)計(jì)圖. 甲同學(xué)計(jì)算出前兩組的頻率和是0.12,乙同學(xué)計(jì)算出跳繩次數(shù)不少于100次的同學(xué)占96%,丙同學(xué)計(jì)算出從左至右第二、三、四組的頻數(shù)的比為4∶17∶15,則本次測(cè)試共抽調(diào)的人數(shù)為( )
A. 120 B. 150 C. 180 D. 無法確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com