閱讀下列解題過程:已知a,b,c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4,①
∴c2(a2-b2)=(a2+b2)(a2-b2),②
∴c2=a2+b2,③
∴△ABC為直角三角形.
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號
;
(2)該步正確的寫法應(yīng)是
當a2-b2=0時,a=b;當a2-b2≠0時,a2+b2=c2
當a2-b2=0時,a=b;當a2-b2≠0時,a2+b2=c2

(3)本題正確的結(jié)論應(yīng)是
△ABC為直角三角形或等腰三角形或等腰直角三角形
△ABC為直角三角形或等腰三角形或等腰直角三角形
分析:(1)上述解題過程,從第三步出現(xiàn)錯誤,錯誤原因為在等式兩邊除以a2-b2,沒有考慮a2-b2是否為0;
(2)正確的做法為:將等式右邊的移項到方程左邊,然后提取公因式將方程左邊分解因式,根據(jù)兩數(shù)相乘積為0,兩因式中至少有一個數(shù)為0轉(zhuǎn)化為兩個等式;
(3)根據(jù)等腰三角形的判定,以及勾股定理的逆定理得出三角形為直角三角形或等腰三角形.
解答:解:(1)上述解題過程,從第③步開始出現(xiàn)錯誤;
(2)正確的寫法為:c2(a2-b2)=(a2+b2)(a2-b2),
移項得:c2(a2-b2)-(a2+b2)(a2-b2)=0,
因式分解得:(a2-b2)[c2-(a2+b2)]=0,
則當a2-b2=0時,a=b;當a2-b2≠0時,a2+b2=c2
(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.
故答案為:(1)③;(2)當a2-b2=0時,a=b;當a2-b2≠0時,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.
點評:此題考查了因式分解的應(yīng)用,勾股定理的逆定理,以及等腰三角形的判定,找出閱讀材料中解題過程中的錯誤是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

26、請閱讀下列解題過程:已知a、b、c為△ABC的三邊,且滿足a2c2-b+2c2=a4-b4,試判斷△ABC的形狀.
解:
∵a2c2-b2c2=a4-b4,A
∴c2(a2-b2)=(a2+b2)(a2-b2),B
∴c2=a2+b2,C
∴△ABC為直角三角形.D
問:
(1)在上述解題過程中,從哪一步開始出現(xiàn)錯誤:
第C步
;
(2)錯誤的原因是:
等式兩邊同時除以a2-b2

(3)本題正確的結(jié)論是:
直角三角形或等腰三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

28、閱讀下列解題過程:已知a、b、c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判定△ABC的形狀.
解:∵a2c2-b2c2=a4-b4
∴c2(a2-b2)=(a2+b2)(a2-b2)-----------(1)
∴c2=a2+b2-----------------(2)
∴△ABC是直角三角形--------------(3)
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:
(,2)
.錯誤的原因為
忽略了a2-b2為0這種情況

(2)本題正確的結(jié)論是
直角三角形或等腰三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

25、閱讀下列解題過程:
已知a、b、c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:因為a2c2-b2c2=a4-b4,①
所以c2(a2-b2)=(a2-b2)(a2+b2)②.
所以c2=a2+b2.③
所以△ABC是直角三角形.
回答下列問題:
(。┥鲜鼋忸}過程,從哪一步開始出現(xiàn)錯誤?請寫出該步代碼為
;
(ⅱ)錯誤的原因為
忽略了a2-b2=0的可能
;
(ⅲ)請你將正確的解答過程寫下來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列解題過程:已知a,b,c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀。
解:∵ a2c2-b2c2=a4-b4,                     ①
∴ c2(a2-b2)=(a2 + b2)(a2-b2),       ②
∴ c2= a2+b2,                            ③
∴ △ABC為直角三角形。
問:
【小題1】上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號       ;
【小題2】該步正確的寫法應(yīng)是                   
【小題3】本題正確的結(jié)論應(yīng)是                     

查看答案和解析>>

同步練習冊答案