【題目】如圖,二次函數(shù)y2=ax2+bx+3的圖象與x軸相交于點(diǎn)A(3,0)、B(1,0),交y軸于點(diǎn)C,C、D是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)y1=mx+n的圖象經(jīng)過B. D兩點(diǎn).
(1)求a、b的值及點(diǎn)D的坐標(biāo);
(2)根據(jù)圖象寫出y2>y1時(shí),x的取值范圍.
【答案】(1)a=-1,b=-2, D(-2,3);(2)2<x<0
【解析】
(1)由于已知拋物線與x軸的交點(diǎn)坐標(biāo),則設(shè)交點(diǎn)式y=a(x+3)(x-1)=,則-3a=3,解得a=-1,所以b=-2,拋物線的對稱軸為直線x=-1,再求出C點(diǎn)坐標(biāo)為(0,3),然后根據(jù)對稱的性質(zhì)確定D點(diǎn)坐標(biāo)為(-2,3);
(2)觀察函數(shù)圖象得到當(dāng)-2<x<0時(shí),拋物線都在直線y=mx+n的上方,即y2>y1.
(1)設(shè)拋物線解析式為y=a(x+3)(x1)= ,
則3a=3,解得a=1,
所以拋物線解析式為y=;
所以b=2,
拋物線的對稱軸為直線x=1,
當(dāng)x=0時(shí), ,則C點(diǎn)坐標(biāo)為(0,3),
由于C. D是二次函數(shù)圖象上的一對對稱點(diǎn),
∴D點(diǎn)坐標(biāo)為(2,3);
(2)觀察函數(shù)圖象得到當(dāng)-2<x<0時(shí),拋物線都在直線y=mx+n的上方,即y2>y1.當(dāng)2<x<0時(shí), .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC與BD相交于點(diǎn)O.將∠COB繞點(diǎn)O順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0<α<90°),角的兩邊分別與BC,AB交于點(diǎn)M,N,連接DM,CN,MN,下列四個(gè)結(jié)論:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+8與x軸相交于點(diǎn)A(﹣2,0)和點(diǎn)B(4,0),與y軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)P.點(diǎn)D(0,4)在OC上,聯(lián)結(jié)BC、BD.
(1)求拋物線的表達(dá)式并直接寫出點(diǎn)P的坐標(biāo);
(2)點(diǎn)E為第一象限內(nèi)拋物線上一點(diǎn),如果△COE與△BCD的面積相等,求點(diǎn)E的坐標(biāo);
(3)點(diǎn)Q在拋物線對稱軸上,如果△BCD∽△CPQ,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD和正方形AEFG有一個(gè)公共點(diǎn)A,點(diǎn)G、E分別在線段AD、AB上,若將正方形AEFG繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)的過程中,你能否找到一條線段的長與線段DG的長度始終相等?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圓弧所在的圓的半徑r的長;
(2)當(dāng)洪水泛濫到跨度只有30米時(shí),要采取緊急措施,若拱頂離水面只有4米,即PE=4米時(shí),是否要采取緊急措施?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥BE∥CF,它們依次交直線l1、l2于點(diǎn)A、B、C和點(diǎn)D、E、F,,AC=14;
(1)求AB、BC的長;
(2)如果AD=7,CF=14,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,的頂點(diǎn)E,F分別在BC,CD邊上,高AG與正方形的邊長相等,求的度數(shù).
如圖,在中,,,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至位置,連接NH,試判斷MN,ND,DH之間的數(shù)量關(guān)系,并說明理由.
在圖中,連接BD分別交AE,AF于點(diǎn)M,N,若,,,求AG,MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:已知實(shí)數(shù)m,n滿足(2m2+n2+1)(2m2+n2﹣1)=80,試求2m2+n2的值
解:設(shè)2m2+n2=t,則原方程變?yōu)椋?/span>t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±9因?yàn)?/span>2m2+n2≥0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個(gè)整體,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
已知實(shí)數(shù)x,y滿足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com