【題目】國家實行一系列“三農(nóng)”優(yōu)惠政策后,農(nóng)民收入大幅度增加.某鄉(xiāng)所轄村莊去年的年人均收入(單位:元)情況如下表:

年人均收入

3 500

3 700

3 800

3 900

4 500

村莊個數(shù)

1

1

3

3

1

該鄉(xiāng)去年各村莊年人均收入的中位數(shù)是( )

A.3 700元B.3 800元C.3 850元D.3 900元

【答案】B

【解析】

找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求;如果是偶數(shù)個,則找中間兩位數(shù)的平均數(shù).

根據(jù)圖表可知題目中數(shù)據(jù)共有10個,
故中位數(shù)是按從小到大排列后第5,第6兩個數(shù)的平均數(shù)作為中位數(shù),
故這組數(shù)據(jù)的中位數(shù)是(3800+3800)=3800元.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的P與邊BC的另一個交點為D,聯(lián)結(jié)PD、AD

(1)求△ABC的面積;

(2)設(shè)PB=x,△APD的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;

(3)如果△APD是直角三角形,求PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB1,BC2,點EAD上,點FBC邊上,FE平分DFB

1)判斷DEF的形狀,并說明理由;

2)若點FBC的中點,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,D、E分別在邊AB、AC,DE、BC的延長線相交于點F

1)求證;

2)當(dāng)AB=12,AC=9AE=8,BD的長與的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如果+n+620,求(m+n2008+m3的值

2)已知實數(shù)a,b,c,d,e,且ab互為倒數(shù),c,d互為相反數(shù),e的絕對值為2,求×ab++e的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂

點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國數(shù)學(xué)史上最先完成勾股定理證明的數(shù)學(xué)家是公元3世紀(jì)三國時期的趙爽,他為了證明勾股定理,創(chuàng)制了一副弦圖,后人稱其為趙爽弦圖(如圖1).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成. 將圖中正方形MNKT,正方形EFGH,正方形ABCD的面積分別記為,, , 則正方形EFGH的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為6cm,點F從點B出發(fā),沿射線AB方向以1cm/秒的速度移動,點E從點D出發(fā),向點A1cm/秒的速度移動(不到點A).設(shè)點E,F同時出發(fā)移動t秒.

1)在點EF移動過程中,連接CECF,EF,則△CEF的形狀是 ,始終保持不變;

2)如圖2,連接EF,設(shè)EFBD于點M,當(dāng)t=2時,求AM的長;

3)如圖3,點G,H分別在邊AB,CD上,且GH=cm,連接EF,當(dāng)EFGH的夾角為45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料并回答問題:

我們知道,乘法公式可以用平面幾何圖形的面積來表示,實際上還有一些代數(shù)恒等式也可以用這種形式表示,如:,就可以用圖1或圖2等圖形的面積表示.

1)請寫出圖3所表示的代數(shù)恒等式: ;

2)試畫一個幾何圖形,使它的面積表示:

3)請仿照上述方法另寫一個含有,的代數(shù)恒等式,并畫出與它對應(yīng)的幾何圖形.

查看答案和解析>>

同步練習(xí)冊答案