【題目】如圖,在中,厘米,厘米,點(diǎn)為的中點(diǎn).
(1)如果點(diǎn)在線段上以厘米秒的速度由向點(diǎn)運(yùn)動,同時點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動.
①若點(diǎn)的運(yùn)動速度與點(diǎn)的運(yùn)動速度相等,秒鐘時,與是否全等?請說明理由;
②點(diǎn)的運(yùn)動速度與點(diǎn)的運(yùn)動速度不相等,當(dāng)點(diǎn)的運(yùn)動速度為多少時,能夠使?并說明理由;
(2)若點(diǎn)以②中的運(yùn)動速度從點(diǎn)出發(fā),點(diǎn)以原來運(yùn)動速度從點(diǎn)同時出發(fā),都逆時針沿的三邊運(yùn)動,求多長時間點(diǎn)與點(diǎn)第一次在的哪條邊上相遇?
【答案】(1)①詳見解析;②4;(2)經(jīng)過了秒,點(diǎn)與點(diǎn)第一次在邊上相遇.
【解析】
(1)①先求得BP=CQ=3,PC=BD=6,然后根據(jù)等邊對等角求得∠B=∠C,最后根據(jù)SAS即可證明;
②因?yàn)?/span>VP≠VQ,所以BP≠CQ,又∠B=∠C,要使△BPD與△CQP全等,只能BP=CP=4.5,根據(jù)全等得出CQ=BD=6,然后根據(jù)運(yùn)動速度求得運(yùn)動時間,根據(jù)時間和CQ的長即可求得Q的運(yùn)動速度;
(2)因?yàn)?/span>VQ>VP,只能是點(diǎn)Q追上點(diǎn)P,即點(diǎn)Q比點(diǎn)P多走AB+AC的路程,據(jù)此列出方程,解這個方程即可求得.
解:(1)①因?yàn)?/span>(秒),所以(厘米)
因?yàn)?/span>厘米,為中點(diǎn),所以(厘米),又因?yàn)?/span> (厘米),
所以(厘米),所以,因?yàn)?/span>,所以,
在與中,,,,所以.
②因?yàn)?/span>,要使,只能厘米,所以點(diǎn)的運(yùn)動時間秒,因?yàn)?/span>,所以厘米.
因此,點(diǎn)的速度為(厘米秒):
(2)因?yàn)?/span>,只能是點(diǎn)追上點(diǎn),即點(diǎn)比點(diǎn)多走的路程,設(shè)經(jīng)過秒后與第一次相遇,依題意得,解得(秒)
此時運(yùn)動了(厘米),又因?yàn)?/span>的周長為厘米,,所以點(diǎn)、在邊上相遇,即經(jīng)過了秒,點(diǎn)與點(diǎn)第一次在邊上相遇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知,,,,且以為頂點(diǎn)的四邊形為菱形.
(1)直接寫出點(diǎn)的坐標(biāo);
(2)請用無刻度直尺作直線,使直線經(jīng)過點(diǎn)且平分菱形的面積,保留作圖痕跡(若無法打印答題卡,不便于規(guī)范作圖,請用幾何語言直接描述具體的作圖過程代替作圖);
(3)已知點(diǎn)是邊上一點(diǎn),若線段將菱形的面積分為兩部分,直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中AD∥BC, ∠B=60°,AB=AD=BO=4cm,OC=8cm, 點(diǎn)M從B點(diǎn)出發(fā),按從B→A→D→C的方向,沿四邊形BADC的邊以1cm/s的速度作勻速運(yùn)動,運(yùn)動到點(diǎn)C即停止.若運(yùn)動的時間為t,△MOD的面積為y,則y關(guān)于t的函數(shù)圖象大約是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AB交x軸于點(diǎn)A(4 ,0),交y軸于點(diǎn)B(0 ,4),
(1)如圖,若C的坐標(biāo)為(-1, ,0),且AH⊥BC于點(diǎn)H,AH交OB于點(diǎn)P,試求點(diǎn)P的坐標(biāo);
(2)在(1)的條件下,如圖2,連接OH,求證:∠OHP=45°;
(3)如圖3,若點(diǎn)D為AB的中點(diǎn),點(diǎn)M為y軸正半軸上一動點(diǎn),連結(jié)MD,過點(diǎn)D作DN⊥DM交x軸于N點(diǎn),當(dāng)M點(diǎn)在y軸正半軸上運(yùn)動的過程中,式子的值是否發(fā)生改變?如發(fā)生改變,求出該式子的值的變化范圍;若不改變,求該式子的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,延長至點(diǎn),使,連接,作于點(diǎn),交的延長線于點(diǎn),且.
(1)求證:;
(2)如果,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知一次函數(shù)(k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)(m≠0)的圖象在第一象限交于C點(diǎn),CD垂直于x軸,垂足為D.若OA=OB=OD=1.
(1)求點(diǎn)A、B、D的坐標(biāo);
(2)求一次函數(shù)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分線,與邊BC交于點(diǎn)F.求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知EF⊥AB,CD⊥AB,下列說法:①EF∥CD;②∠B+∠BDG=180°;③若∠1=∠2,則∠1=∠BEF;④若∠ADG=∠B,則∠DGC+∠ACB=180°,其中說法正確的是( 。
A. ①②B. ③④C. ①②③D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知菱形的邊長為6,, 點(diǎn)、分別是邊、上的動點(diǎn)(不與端點(diǎn)重合),且.
(1)求證: 是等邊三角形;
(2)點(diǎn)、在運(yùn)動過程中,四邊形的面積是否變化,如果變化,請說明理由;如果不變,請求出面積;
(3)當(dāng)點(diǎn)在什么位置時,的面積最大,并求出此時面積的最大值;
(4)如圖2,連接分別與邊、交于、,當(dāng)時,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com