【題目】如圖,已知A3,0),B0,﹣1),連接AB,過點B的垂線BC,使BCBA,則點C坐標是_____

【答案】C1,﹣4

【解析】

過點作CEy軸于E,證明AOB≌△BECAAS),得出OABEOBCE,再求出OA3,OB1,即可得出結(jié)論;

解:如圖,過點作CEy軸于E

∴∠BEC90°,

∴∠BCE+∠CBE90°,

ABBC,

∴∠ABC90°,

∴∠ABO+∠CBE90°,

∴∠ABOBCE,

AOBBEC中,

,

∴△AOB≌△BECAAS),

OABE,OBCE,

A30),B0,﹣1),

OA3,OB1

CE1,BE3

OEOB+BE4,

C1,﹣4).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定四邊形ABCD為平行四邊形的是( 。

A.ABCD,ADBCB.OAOC,OBOD

C.ADBC,ABCDD.ABCD,ADBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=2,BC=4.點E為BC邊上一動點,連接AE,作∠AEF=∠B,EF與△ABC的外角∠ACD的平分線交于點F.當EF⊥AC時,EF的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索與證明:

(1)如圖1,直線經(jīng)過正三角形的項點,在直線上取兩點,,使得.通過觀察或測量,猜想線段之間滿足的數(shù)量關(guān)系,并子以證明:

(2)(1)中的直線繞著點逆時針方向旋轉(zhuǎn)一個角度到如圖2的位置,并使.通過觀察或測量,猜想線段之間滿足的數(shù)量關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在一個直角三角形的內(nèi)部作一個長方形ABCD,其中AB和BC分別在兩直角邊上,設AB=xm,長方形的面積為ym2,要使長方形的面積最大,其邊長x應為(  )

A. m B. 6m C. 15m D. m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C90°,∠B30°,分別以點A和點B為圓心,大于AB的長為半徑作弧,兩弧相交于M、N兩點,作直線MN,交BC于點D,連接AD

1)根據(jù)作圖判斷:ABD的形狀是   ;

2)若BD10,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙二人做某種機械零件,已知每小時甲比乙少做8個,甲做120個所用的時間與乙做150個所用的時間相等.

1)甲、乙二人每小時各做零件多少個?

2)甲做幾小時與乙做4小時所做機械零件數(shù)相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉(zhuǎn)一周.若DCE其中一邊與AB平行,則∠ECB的度數(shù)為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山上升的速度是每分鐘 米,乙在地時距地面的高度 米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關(guān)系式.

(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

同步練習冊答案